好文档 - 专业文书写作范文服务资料分享网站

中考数学总复习知识点总结(经典、好用)

天下 分享 时间: 加入收藏 我要投稿 点赞

3、一次函数、正比例函数图像的主要特征:

一次函数y?kx?b的图像是经过点(0,b)的直线;正比例函数y?kx的图像是经过原点(0,0)的直线。

k的符号

b的符号

函数图像

y

0 x

图像特征

b>0

图像经过一、二、三象限,y随x的增大而增大。

k>0

b<0

y

0 x

图像经过一、三、四象限,y随x的增大而增大。

b>0

y

0 x

图像经过一、二、四象限,y随x的增大而减小

K<0

b<0

y

0 x

图像经过二、三、四象限,y随x的增大而减小。

注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。

4、正比例函数的性质

一般地,正比例函数y?kx有下列性质:

(1)当k>0时,图像经过第一、三象限,y随x的增大而增大; (2)当k<0时,图像经过第二、四象限,y随x的增大而减小。 5、一次函数的性质

一般地,一次函数y?kx?b有下列性质: (1)当k>0时,y随x的增大而增大 (2)当k<0时,y随x的增大而减小

6、正比例函数和一次函数解析式的确定

确定一个正比例函数,就是要确定正比例函数定义式y?kx(k?0)中的常数k。确定一个一次函数,需要确定一次函数定义式y?kx?b(k?0)中的常数k和b。解这类问题的一般方法是待定系数法。

考点五、反比例函数 (3~10分)

1、反比例函数的概念

k?1(k是常数,k?0)叫做反比例函数。反比例函数的解析式也可以写成y?kx的形式。x自变量x的取值范围是x?0的一切实数,函数的取值范围也是一切非零实数。

一般地,函数y?2、反比例函数的图像

反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x?0,函数y?0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。 3、反比例函数的性质

反比例函数 k的符号

K > 0

Y

O x

①x的取值范围是x?0, y的取值范围是y?0;

②当k>0时,函数图像的两个分支分别 在第一、三象限。在每个象限内,y 随x 的增大而减小。

y?k(k?0) xK < 0

y

O x

图像

性质

①x的取值范围是x?0, y的取值范围是y?0;

②当k<0时,函数图像的两个分支分别 在第二、四象限。在每个象限内,y 随x 的增大而增大。

4、反比例函数解析式的确定

确定及诶是的方法仍是待定系数法。由于在反比例函数y?k中,只有一个待定系数,因此只需要一对对应x值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。 5、反比例函数中反比例系数的几何意义

k(k?0)图像上任一点P作x轴、y轴的垂线PM,PN,则所得的矩形PMONx的面积S=PM?PN=y?x?xy。

如下图,过反比例函数y??y?k,?xy?k,S?k。 x 第七章 二次函数

考点一、二次函数的概念和图像 (3~8分)

1、二次函数的概念

一般地,如果y?ax?bx?c(a,b,c是常数,a?0),那么y叫做x 的二次函数。

2y?ax2?bx?c(a,b,c是常数,a?0)叫做二次函数的一般式。

2、二次函数的图像

二次函数的图像是一条关于x??b对称的曲线,这条曲线叫抛物线。 2a抛物线的主要特征:

①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法:

(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴

(2)求抛物线y?ax?bx?c与坐标轴的交点:

当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D。由C、M、D三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。

2考点二、二次函数的解析式 (10~16分)

二次函数的解析式有三种形式:

(1)一般式:y?ax?bx?c(a,b,c是常数,a?0) (2)顶点式:y?a(x?h)?k(a,h,k是常数,a?0)

2(3)当抛物线y?ax?bx?c与x轴有交点时,即对应二次好方程ax?bx?c?0有实根x1和x2存在时,

222根据二次三项式的分解因式ax?bx?c?a(x?x1)(x?x2),二次函数y?ax?bx?c可转化为两根式

22y?a(x?x1)(x?x2)。如果没有交点,则不能这样表示。

考点三、二次函数的最值 (10分)

如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x??b时,2ay最值4ac?b2?。

4a如果自变量的取值范围是x1?x?x2,那么,首先要看?b是否在自变量取值范围x1?x?x2内,若在此2a4ac?b2b范围内,则当x=?时,y最值?;若不在此范围内,则需要考虑函数在x1?x?x2范围内的增

4a2a2减性,如果在此范围内,y随x的增大而增大,则当x?x2时,y最大?ax2?bx2?c,当x?x1时,y最小?ax12?bx1?c;如果在此范围内,y随x的增大而减小,则当x?x1时,y最大?ax12?bx1?c,当

2?bx2?c。 x?x2时,y最小?ax2

考点四、二次函数的性质 (6~14分)

1、二次函数的性质

函数

a>0

y

0 x

(1)抛物线开口向上,并向上无限延伸; (2)对称轴是x=

二次函数

y?ax2?bx?c(a,b,c是常数,a?0)

a<0

y

0 x

图像

(1)抛物线开口向下,并向下无限延伸;

?b2a,顶点坐标是(

?b2a,(2)对称轴是x=

?b2a,顶点坐标是(

?b2a,

4ac?b24a性质

);

4ac?b24a);

b时,y随x的增大2ab而减小;在对称轴的右侧,即当x>?时,y随x的增

2a(3)在对称轴的左侧,即当x?时,y随x

2a(3)在对称轴的左侧,即当x

b时,y有最大值,2ay最小值4ac?b2?4a

y最大值4ac?b2?4a

22、二次函数y?ax?bx?c(a,b,c是常数,a?0)中,a、b、c的含义: a表示开口方向:a>0时,抛物线开口向上 a<0时,抛物线开口向下

b与对称轴有关:对称轴为x=?b 2ac表示抛物线与y轴的交点坐标:(0,c)

3、二次函数与一元二次方程的关系

一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。

因此一元二次方程中的??b?4ac,在二次函数中表示图像与x轴是否有交点。 当?>0时,图像与x轴有两个交点; 当?=0时,图像与x轴有一个交点; 当?<0时,图像与x轴没有交点。

2补充:

1、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法)

y 如图:点A坐标为(x1,y1)点B坐标为(x2,y2) 则AB间的距离,即线段AB的长度为?x1?x2???y1?y2? A

0 x B

2、函数平移规律(中考试题中,只占3分,但掌握这个知识点,对提高答题速度有很大帮助,可以大大节省做题的时间)

左加右减、上加下减

22 第八章 图形的初步认识

考点一、直线、射线和线段 (3分)

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。 平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。 2、点、线、面、体 (1)几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。 体:几何体也简称体。

(2)点动成线,线动成面,面动成体。 3、直线的概念

一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。 4、射线的概念

直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。 5、线段的概念

直线上两个点和它们之间的部分叫做线段。这两个点叫做线段的端点。 6、点、直线、射线和线段的表示 在几何里,我们常用字母表示图形。 一个点可以用一个大写字母表示。 一条直线可以用一个小写字母表示。

一条射线可以用端点和射线上另一点来表示。 一条线段可用它的端点的两个大写字母来表示。

0xgtf275cf6b8ve00zsa83uyx9681900vcl
领取福利

微信扫码领取福利

微信扫码分享