经济数学基础形成性考核册及参考答案
作业(一)
(一)填空题 1.limx?0x?sinx?___________________.答案:0 x?x2?1,x?02.设f(x)??,在x?0处连续,则k?________.答案:1 ?k,x?0?3.曲线y?x在(1,1)的切线方程是 .答案:y?211x? 224.设函数f(x?1)?x?2x?5,则f?(x)?____________.答案:2x 5.设f(x)?xsinx,则f??()?__________.答案:?π2π 2(二)单项选择题
1. 当x???时,下列变量为无穷小量的是( )答案:B A.(??,1)?(1,??) B.(??,?2)?(?2,??)
C.(??,?2)?(?2,1)?(1,??) D.(??,?2)?(?2,??)或(??,1)?(1,??) 2. 下列极限计算正确的是( )答案:B A.limxxx?0?1 B.lim?x?0xx?1
C.limxsinx?01sinx?1 D.lim?1
x??xx3. 设y?lg2x,则dy?( ).答案:B
11ln101dxdxdxA.2x B.xln10 C.x D.xdx 4. 若函数f (x)在点x0处可导,则( )是错误的.答案:B
A.函数f (x)在点x0处有定义 B.limf(x)?A,但A?f(x0)
x?x0 C.函数f (x)在点x0处连续 D.函数f (x)在点x0处可微
5.当x?0时,下列变量是无穷小量的是( ). 答案:C A.2 B.(三)解答题 1.计算极限
xsinx C.ln(1?x) D.cosx xx2?3x?2(x?2)(x?1)1?lim??(1)lim
x?1x?1(x?1)(x?1)2x2?11 / 15
x2?5x?6(x?2)(x?3)1?lim? (2)lim2x?2x?6x?8x?2(x?2)(x?4)2(3)limx?01?x?1(1?x?1)(1?x?1)1?lim?? x?0x21?x?12x2?3x?51? (4)limx??3x2?2x?43(5)limsin3xsin3x5x33? lim?
x?0sin5xx?03xsin5x55x2?4(x?2)(x?2)?lim?4 (6)limx?2sin(x?2)x?2sin(x?2)1?xsin?b,x?0?x?2.设函数f(x)??a,x?0,
?sinxx?0?x?问:(1)当a,b为何值时,f(x)在x?0处有极限存在? (2)当a,b为何值时,f(x)在x?0处连续.
答案:(1)当b?1,a任意时,f(x)在x?0处有极限存在; (2)当a?b?1时,f(x)在x?0处连续。 3.计算下列函数的导数或微分: (1)y?x?2?log2x?2,求y? 答案:y??2x?2ln2?(2)y?x2x21 xln2ax?b,求y?
cx?da(cx?d)?c(ax?b)ad?cb=
(cx?d)2(cx?d)2答案:y??(3)y?13x?5,求y?
答案:y???32(3x?5)3
(4)y?x?xex,求y?
2 / 15
答案:y??12xax?(x?1)ex
(5)y?esinbx,求dy
ax答案:dy?e(asinbx?bcosbx)dx (6)y?e?xx,求dy
1x31x?2ex)dx 答案:dy?(2x(7)y?cosx?e?x,求dy 答案:dy?(2xe?x?n212sinx2x)dx
(8)y?sinx?sinnx,求y? 答案:y??n(sinn?1xcosx?cosnx)
(9)y?ln(x?1?x2),求y?
1?答案:y??2x21?x22x?1?xcot1x?11?x2
(10)y?2?1x1?3x2?2xx3,求y?
ln21?21?6?x?x 答案:y??126x2sinx4.下列各方程中y是x的隐函数,试求y?或dy (1)x?y?xy?3x?1,求dy
答案:2x?2ydy?y?xdy?3?0 , dy?222cot5y?3?2xdx
2y?x(2)sin(x?y)?exy?4x,求y?
3 / 15
4?yexy?cos(x?y)答案:cos(x?y)(1?y?)?e(y?xy?)?4 , y?? xyxe?cos(x?y)xy5.求下列函数的二阶导数: (1)y?ln(1?x),求y??
22x2?2x2答案: y?? , y??? 21?x(1?x2)2(2)y?1?xx,求y??及y??(1)
?x?答案:y???1?x2x3?1? , y???x2?x2,y??(1)?1 ???442x23x21153x作业(二)
(一)填空题 1.若2.
?f(x)dx?2?x?2x?c,则f(x)?___________________.答案:2xln2?2
?(sinx)?dx?________.答案:sinx?c
f(x)dx?F(x)?c,则?xf(1?x2)dx? .答案:?de2ln(1?x)dx?___________.答案:0 ?1dx1F(1?x2)?c 23. 若
4.设函数
5. 若P(x)??0x11?t2dt,则P?(x)?__________.答案:?11?x2
(二)单项选择题
2
1. 下列函数中,( )是xsinx的原函数. A.
11cosx2 B.2cosx2 C.-2cosx2 D.-cosx2 22答案:D
2. 下列等式成立的是( ).
A.sinxdx?d(cosx) B.lnxdx?d()
C.2dx?x1x1d(2x) ln2 D.
1xdx?dx
答案:C
3. 下列不定积分中,常用分部积分法计算的是( ). A.cos(2x?1)dx, B.x1?xdx C.xsin2xdx D.
??2?x?1?x2dx
4 / 15
答案:C
4. 下列定积分计算正确的是( ). A.
C.
?1?12xdx?2 B.?16?1dx?15
???????(x2?x3)dx?0 D.?sinxdx?0
答案:D
5. 下列无穷积分中收敛的是( ).
A.
?????1????1xdx B.?dx C.?edx D.?sinxdx
21x1x0答案:B
(三)解答题
1.计算下列不定积分
(1)?3xexdx
3x答案:ex?c ln3e(2)
?(1?x)2xdx
235答案:=
?1?2x?xdx=2x?43x2?2x5x2?c
)?x2(3?4x?2dx 答案:=?(x?2)dx?12x2?2x?c (4)
?11?2xdx
答案:=?12?11?2xd(1?2x)??12ln1?2x?c
(5)?x2?x2dx
23答案:=
?2?x2d2?x122=3(2?x)2?c
(6)
?sinxxdx
5 / 15
1答案:=sinxd2x??2cosx?c (7)xsin??xdx 2xxxxx?2xcos?2?cosdx??2xcos?4sin?c 22222答案:?2xdcos?(8)ln(x?1)dx
答案:?xln(x?1)?xdln(x?1)?(x?1)ln(x?1)?x?c 2.计算下列定积分 (1)
???2?11?xdx
1答案:=
??1(1?x)dx??21x21x252(x?1)dx?(x?)?1?(?x)1?
222(2)
?21edx 2x1x答案:=?e3?2112ed??ex|1?e?e
x1x1(3)
?1x1?lnx1dx
12答案:=
?e311?lnx1edlnx?2(1?lnx)|1?2
3?(4)
?20xcos2xdx
???1112??2sin2xdx]?? 答案:=?2xdsin2x?[xsin2x|002022(5)
?e1xlnxdx
答案:=
4?e12exx2x21elnxd?lnx|1??dlnx?(e2?1)
12224(6)
?(1?xe0?x)dx
?x答案:=4?作业三
?40xde?4?xe?x|??e?xdx?5?5e?4
04046 / 15
(一)填空题
?104?5???1.设矩阵A?3?232,则A的元素a23?__________________.答案:3 ????216?1??2.设A,B均为3阶矩阵,且A?B??3,则?2ABT=________. 答案:?72
2223. 设A,B均为n阶矩阵,则等式(A?B)?A?2AB?B成立的充分必要条件
是 .答案:AB?BA
4. 设A,B均为n阶矩阵,(I?B)可逆,则矩阵A?BX?X的解X?______________. 答案:(I?B)?1A
?100????15. 设矩阵A?020,则A????00?3????1??__________.答案:A??0??0??0120?0??0? ?1??3??(二)单项选择题
1. 以下结论或等式正确的是( ).
A.若A,B均为零矩阵,则有A?B
B.若AB?AC,且A?O,则B?C
C.对角矩阵是对称矩阵
D.若A?O,B?O,则AB?O答案C
2. 设A为3?4矩阵,B为5?2矩阵,且乘积矩阵ACB有意义,则C为( )矩阵. A.2?4 B.4?2
C.3?5 D.5?3 答案A
3. 设A,B均为n阶可逆矩阵,则下列等式成立的是( ). ` A.(A?B)?1TT?A?1?B?1, B.(A?B)?1?A?1?B?1
C.AB?BA D.AB?BA 答案C 4. 下列矩阵可逆的是( ).
?123???10?1????? A.023 B.101 ???????003???123??7 / 15
C.??11? D.?11??00????22?? 答案A
?2225. 矩阵A????333?的秩是( ). ?44??4??A.0 B.1 C.2 D.3 答案B
三、解答题 1.计算 (1)???21??01??1??53??????2?10?=?35?? (2)??02??11??00??0?3????00?????00?? ??3?(3)??1254??0???=?0?
??1??2???23???124??2452.计算?1??122??14?????2???3???610? ?1?3???23?1????3?27???解 ?123???122????124?143????245?61???7197?0??2??6?32?????0???712???1????23?1????3?27????0?4?7????3?2? =?515?1110?
??2?14???3???233.设矩阵A???1??111??123?,B??112?,求AB。
?????0?11????011??解 因为AB?AB
23?1232A?111?112?(?1)2?3(?1)220?110?1012?2 8 / 15
45?10??27???
123123B?112?0-1-1?0
011011所以AB?AB?2?0?0
?124?4.设矩阵A???2?1?,确定?的值,使r(A)最小。 ?110??????124??124??124???答案:A???2?1????0??4?7??11????110????0?1?4??????0?4? ?9?0??40???当??94时,r(A)?2达到最小值。 ??2?5321?5.求矩阵A??5?8543????1?7420?的秩。 ?4?1123????2?5321??1?0??答案:A??5?8543?3??1?74027???1?7420??742???5?854?2?5321????15?4?1123????4?1123????09?5?027?15??1?7420???09?5?21??0?? ?r(A)?2。 ?0000?00000??6.求下列矩阵的逆矩阵:
?1?32?(1)A????301?
??11?1?????1?32100??1?32100?答案AI???301010?????0?97310??11?1001?????
?04?3?101??9 / 15
20??69??21???63?? ?1?32100??100113????0?11112???010237?
?001349???001341????????113?A?1???237??? ?349????13?6?3?(2)A =???4?2?1?. ???211??答
??13?6?3100??100?130?AI????4?2?1010????100?1?001012??0102??211001?????11001????2???0010
??10?A-1 =?3?2?7?1? ??012???7.设矩阵A???12??12??35??,B???23??,求解矩阵方程XA?B. 答案:AT???13??25?? BT???12??23??
ATBT???1312??2523?????1312??0?10?1?????101?1??0101?? XT???1?1???01?? X =
?10???11?? 四、证明题
1.试证:若B1,B2都与A可交换,则B1?B2,B1B2也与A可交换。 证明:(B1?B2)A?B1A?B2A?AB1?AB2?A(B1?B2),
B1B2A?B1AB2?AB1B2
2.试证:对于任意方阵A,A?AT,AAT,ATA是对称矩阵。
证明:(A?AT)T?(AT)T?AT?A?AT,(AAT)T?AAT,(ATA)T?ATA
10 / 15
30??7?1?12???3.设A,B均为n阶对称矩阵,则AB对称的充分必要条件是:AB?BA。 充分性:证明(AB)?AB 必要性:证明AB?BA
4.设A为n阶对称矩阵,B为n阶可逆矩阵,且B?1?BT,证明B?1AB是对称矩阵。 提示:证明(BAB)=B?1AB 作业(四) (一)填空题 1.函数f(x)??1TT4?x?21_________.答案:的定义域为__________(1,2)?(2,4)
ln(x?1)2. 函数y?3(x?1)的驻点是________,极值点是 ,它是极 值点.答案:
x?1,x?1,小
3.设某商品的需求函数为q(p)?10e?p2,则需求弹性Ep? .答案:?2p
14.行列式D??11111?____________.答案:4
?1?1116??11??,则t__________时,方程组有唯
325. 设线性方程组AX?b,且A?0?1????00t?10??一解.答案:??1
(二)单项选择题
1. 下列函数在指定区间(??,??)上单调增加的是( ). A.sinx B.e x C.x 2 D.3 – x 答案:B
1,则f(f(x))?().. x11A. B.2 C.x D.x
xx2. 设f(x)?答案:C
3. 下列积分计算正确的是( ).
x?x1e?eex?e?xdx?0 B.?dx?0 A.??1?122111 / 15
C.
?1-1xsinxdx?0 D.
?1-1(x2?x3)dx?0
答案:A
4. 设线性方程组Am?nX?b有无穷多解的充分必要条件是( ).
A.r(A)?r(A)?m B.r(A)?n C.m?n D.r(A)?r(A)?n 答案:D
?x1?x2?a1?5. 设线性方程组?x2?x3?a2,则方程组有解的充分必要条件是( ).
?x?2x?x?a233?1A.a1?a2?a3?0 B.a1?a2?a3?0
C.a1?a2?a3?0 D.?a1?a2?a3?0 答案:C 三、解答题
1.求解下列可分离变量的微分方程: (1) y??e答案:
x?y
dy?exey,dxdy?yxx?yx?e?e?c , , ?edx?edy?edxx??edyxex(2) ?dx3y2答
案
:
3y2dy?xexdx,y3?xex?ex?c
2x3ydy?xe??dx,
y3?xex??exdx
2. 求解下列一阶线性微分方程: (1)y??答案:
2y?x3 x??xdx2y?e2??dxx?(?xe3dx?C)?e2lnx(?xe3?2lnxx2dx?C)?x(?xdx?C)?x(?C)
222(2)y??y?2xsin2x x1??dxx答案:
y?e?(?2xsin2xe??xdx1dx?C)?elnx(?2xsin2xe?lnxdx?C)
?x(?sin2xd2x?C)?x(?cos2x?C)3.求解下列微分方程的初值问题: (1) y??e2x?y,y(0)?0
12 / 15
答案:edy?exy2xdx ,
y?edy?12x12x1x1yy , , ed2xe?e?ce?e?
2?222(2)xy??y?e?0,y(1)?0 答案
y?e??xdx1ex?xdxexlnx1?lnx(?edx?C)?e(?edx?C)?x?1(?exdx?C)?(ex?C): xxx1y?1x(ex?e) 4.求解下列线性方程组的一般解:
?x1?2x3?x4?0(1)???x1?x2?3x3?2x4?0
??2x1?x2?5x3?3x4?0答案:
?102?1?A????11?32???102?1??102?1??01?11???01?11?
?2?15?3??????????0?11?1????0000??所以,方程的一般解为
??x1??2x3?x4x(其中?xx1,x2是自由未知量) 2?3?x4
?2x1?x2?x3?x4?1(2)??x1?2x2?x3?4x4?2
??x1?7x2?4x3?11x4?5答
案
??2?1111??A??12?142??12?142??12?10?53?7?3???0???17?4115????5?37??53???03????000??10164??555??73??01?3055??00050????????x1??1?5x3?645x4?5(其中x,x??x37312是自由未知量)
2?5x3?5x4?513 / 15
:
42??7?3?00????5.当?为何值时,线性方程组
?x1?x2?5x3?4x4?2?2x?x?3x?x?1?1234 ??3x1?2x2?2x3?3x4?3??7x1?5x2?9x3?10x4??有解,并求一般解。
答案:
?1?1?54?2?13?1A???3?2?23??7?5?9102??1?1?011?????013??????022??1?1?54?2?13?1?1????0000??8???00000???51313262??9?3???9?3???18??14?4
当??8时有解,一般解??x1??7x3?5x4?1(其中x1,x2是自由未知量)
x??13x?9x?334?25.a,b为何值时,方程组
?x1?x2?x3?1??x1?x2?2x3?2 ?x?3x?ax?b23?11?1??1?1?11??1?1?1?1?1?1??????02?
?11?11答案:A?12?22?02?????????ab??13??04a?1b?1???00a?3b?3??当a??3且b?3时,方程组无解;
当a??3时,方程组有唯一解;
当a??3且b?3时,方程组无穷多解。 6.求解下列经济应用问题:
(1)设生产某种产品q个单位时的成本函数为:C(q)?100?0.25q?6q(万元), 求:①当q?10时的总成本、平均成本和边际成本;
②当产量q为多少时,平均成本最小?
答案:①C(10)?185(万元) C(10)?2185?18.5(万元/单位) 1014 / 15
C?(q)?0.5q?6, C?(10)?11(万元/单位)
②C???100?0.25,q2C??0,q?20
当产量为20个单位时可使平均成本达到最低。
(2).某厂生产某种产品q件时的总成本函数为C(q)?20?4q?0.01q(元),单位销售价格为p?14?0.01q(元/件),问产量为多少时可使利润达到最大?最大利润是多少. 答案:L(q)?R(q)?C(q)?pq?20?4q?0.01q?10q?0.02q?20
222L?(q)?10?0.04q,L?(q)?0,q?250
当产量为250个单位时可使利润达到最大,且最大利润为L(250)?1230(元)。 (3)投产某产品的固定成本为36(万元),且边际成本为C?(q)?2q?40(万元/百台).试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低. 解:当产量由4百台增至6百台时,总成本的增量为 答案: ?C??64(2q?40)dq?q2?40q|64?100(万元) 36,qC?(q)?1?36,q2C?(q)?0,q?6
C(q)?q?40?当q?6(百台)时可使平均成本达到最低.
(4)已知某产品的边际成本C?(q)=2(元/件),固定成本为0,边际收益R?(q)?12?0.02q,求:①产量为多少时利润最大?
②在最大利润产量的基础上再生产50件,利润将会发生什么变化? 答案:①L?(q)?12?0.02q?2?10?0.02q,当产量为500件时,利润最大.
② ?L?550L?(q)?0,q?500
?500(10?0.02q)dq??25(元)
即在最大利润产量的基础上再生产50件,利润将减少25元.
15 / 15