3 技术政策编制必要性
“十二五”大气污染防治规划将大气污染防治工作扩展至涵盖NOx、O3、PM2.5、VOCs、有毒有害物质等污染因子,实现多污染同时控制。2010年5月11日,国务院办公厅转发《环境保护部等部门关于推进大气污染联防联控工作改善区域空气质量指导意见的通知》(国办发[2010] 33号),正式地从国家层面上提出了加强挥发性有机物污染防治工作的要求,将VOCs和SO2、NOx、颗粒物一起列为改善大气环境质量的防控重点污染物,把开展VOCs防治工作作为大气污染联防联控工作的重要部分。本技术政策的制定是完成“十二五”大气污染防治规划中规定目标的需要。
挥发性有机物(VOCs)具有光化学活性,排放到大气中是形成细粒子(PM2.5)和臭氧的重要前体物质,增强温室效应,在环境中的具有累积性和持久性等特点。研究表明,不同地区的大气中半挥发或不挥发的有机物在PM2.5细粒子中的比重占到20%~40%左右,还有部分的大气细粒子由VOCs转化而来。近年来尽管北京市大气污染中的二氧化硫、氮氧化物呈下降趋势,但夏季臭氧浓度却在增加,VOCs被认为是臭氧生成和其它细粒子生成的共同前体物,VOCs对大气环境质量的影响已引起国内大气化学科学家们的共同重视。随着经济的发展,由工业、居民生活等人为源排放的VOCs总量正逐年增加,导致光化学烟雾、城市灰霾等复合大气污染问题日益严重。
除了环境毒性以外,工业排放常见的VOCs如三苯类、卤代烃类、硝基苯类、苯胺类等都对人体具有较大的危害作用,长期接触会严重影响人们的身体健康。此外,很大一部分的挥发性化合物具有异味,会严重影响人们的生活质量。所以制定相关技术政策控制VOCs污染,是改善大气环境质量和维护人们健康和生活质量的需要。
VOCs排放源的范围很广泛,治理技术也更复杂,而治理技术的总体水平不高,在治理技术选择、治理设施运行监管等方面还存在突出问题。本技术政策的制定可以从国家层面上对VOCs减排途径及污染防治技术进行规范和引导,是提高国家环境技术管理水平的需要。
4 源头控制与典型行业清洁生产技术
降低VOCs排放应从污染源头即溶剂产生、运输、使用等各个环节做起,尽量采用清洁生产工艺,减少生产工艺中VOCs的排放量。
4.1 石油炼制和石油化工行业
石油炼制和石油化工行业是指以石油和(或)天然气为原料,采用物理操作和化学反应相结合的方法,生产各种石油产品和石化产品的加工行业。石油炼制是以石油为原料,加工生产燃料油、润滑油等产品的全过程。石油化工生产指对炼油过程提供的原料油气进行裂解及后续化学加工,生产以三烯(乙烯、丙烯、丁二烯)、三苯(苯、甲苯、二甲苯)为代表的石化基本原料、各种有机化学品、合成树脂、合成橡胶、合成纤维等的过程。
石油炼制工业是我国重要能源与基础原材料工业之一,其产品用于国民生活和各个工业部门。石油炼制工业的加工能力常被用作衡量一个国家工业发展水平的标志。2011年全国石油产量2.01亿吨,累计加工原油4.48亿吨,成品油生产总量合计达到2.66亿吨(比上年增长6.7%),其中生产柴油1.67亿吨,生产汽油8141万吨(约占28),生产煤油1879万吨。2011年度生产溶剂230万吨,比上年增长约97%。石油炼制工业除生产汽油、煤油、柴油和润滑油等四大类油品外,还生产沥青、溶剂油、石油化工原料、石油蜡、液化石油气等几十类产品。
石化生产中使用的原材料(含半成品、成品)大多为挥发性有机物,易燃易爆,石油化工行业在挥发性有机物排放中的比例是比较高的。石化生产具有高温、高压、深冷的特点,要求石化生产密闭化、连续化,自动化程度高。石化生产设备类型繁多,有贮罐、计量槽、气瓶及精馏、吸收、萃取塔和反应釜(塔、器)、裂解炉等静态设备,也有压缩机、风机、输送液体的泵等动态设备,管道纵横交错,加之介质具有腐蚀性,若设备老化、长久失修,则极易发生跑、冒、滴、漏。因此,应定期对生产装置、设备进行检查维修,改善工艺装置和生产操作条件,减少有机物的暴露,减少溶剂的跑冒滴漏现象,降低有机物的无组织逸散。
4.2储运销过程
储存过程排放:炼油厂、大型化工厂的罐区和生产装置中间罐的大、小呼吸过程中,有浓度高、小风量的VOCs排放。大呼吸时的最高浓度可达环境温度下饱和蒸气压的对应浓度,排气量一般小于100m3/h。中国各油井、中转站、炼油厂的原油和汽油储存器基本上实现了浮顶罐,由于柴油的挥发性较原油和汽油低很多,其储存容器仍为固定顶罐。浮顶罐可比固定顶罐减少损耗80%以上,其中内浮顶罐可比固定罐减少85%~96%的损耗。
装车船过程排放:炼油厂和大型化工厂的原油和成品油的铁路装车和汽车装车过程,基本采用小鹤管液下装车,排气量小但浓度高。最高浓度可达环境温度下饱和蒸气压的对应浓度,一般气体量小于500m3/h。运输方式包括公路、铁路、轮船和管道运输。从开采到炼厂为管道输出,然后50%通过装船运输,50%通过铁路运输。从炼厂到油库一般为铁路和油轮,从油库到加油站主要为公路运输。其中装/卸船采用了平衡装船,带回气系统,因此排放较小,原油损耗为0.01%(装车),0.003%(卸车),汽油损耗为0.022%(装车),0.003%(卸车),铁道部为了安全起见,油轮运输一般要求上装上卸。装车为装船的排放损耗的2~5倍。装车方式主要分为顶部装油和底部装油。顶部装油的气液比(v/v)为1:1.1~1.4,油气产生量大、浓度高。底部装油的气液比(v/v)基本上为1:1,油气产生量少、浓度也较低。顶部装油的优点是不易发生漏油现象,缺点是油气产生量大;底部装油的优点是所需设备较顶部装油简单,将活动装臂或软管从地面和油槽车下部配接即可,产生的油气量少,目前国内已有使用。
加油过程排放:加油站向车用油箱付油时,先通过泵将埋地罐中的汽油送至加油机计量系统进行计量,再通过加油枪送入车用油箱中。若不进行油气回收,加油时产生的油气在车用油箱的加油口处排放。向车用油箱付油时,应使用可收集油气的加油枪,收集的油气可通过同步运行的真空辅助泵返回到地下罐。由于气液比一般在1:1~1:1.1之间,真空辅助平衡油气回收法回收的油气量约为产生量的90%,尚有10%的油气通过加油站的平衡呼吸阀排放。
4.3 含VOCs产品的生产 4.3.1涂料行业
2011年中国涂料总产量1079.5万吨,同比增长16.44%。从各省市的产量来看,广东省涂料
的产量达246万吨,同比增长11.26%,占全国总产量的22.79%。紧随其后的是上海、江苏和山东,分别占总产量的13.57%、10.26%和9.01%。
涂料按形态分为固态涂料(即粉末涂料)和液态涂料(溶剂型涂料、水溶性涂料、水乳型涂料)。粉末涂料按照成膜物质的性质分为两大类:热塑性和热固性粉末涂料。热塑性粉末涂料包括聚氯乙烯、聚乙烯、尼龙、氟树脂、氯化聚醚、乳胶等粉末涂料;热固性粉末涂料包括环氧、聚酯、丙烯酸酯等粉末涂料。粉末涂料不含溶剂,使用过程中基本不会释放出VOCs,是环保涂料的重要的发展方向之一。液态涂料应用最广泛,其中溶剂型涂料溶剂含量可以超过75%,水性涂料主要含丙烯酸酯和聚氨酯成分,不含或较少含机溶剂成为目前环保涂料的重要发展方向之一。
2011年工信部针对涂料行业提出了清洁生产技术推行方案(见工信部节[2011]381号),该方案的总体目标:(1)重点示范和推广以水性木器涂料、水性桥梁涂料、水性汽车涂料、水性集装箱涂料、光固化涂料为代表的环境友好型涂料生产技术,以及以自动化安全环保和节能减排为目标的溶剂型涂料全密闭式一体化生产工艺技术与涂料用氨基树脂清洁生产技术。预计到2013年,水性木器涂料在木器涂料中所占比重达到15%,溶剂型涂料全密闭式一体化生产工艺技术在溶剂型涂料生产中的普及率将达到10%,水性桥梁涂料在桥梁涂料中所占比重达到10%,水性汽车涂料在汽车涂料中所占比重达到75%,水性集装箱涂料在集装箱涂料中所占比重达到5%,涂料用氨基树脂清洁化生产普及率达到60%,光固化涂料在涂料市场的占有率可达到1.5%。(2)通过以上环境友好型涂料生产技术和清洁生产技术的示范和推广,预计到2013年,可减少有机溶剂使用量14万吨/年,削减化学需氧量产生量2.7万吨/年。目前推行方案中提出的具备应用可行性的清洁生产技术见表13。
4.3.2油墨行业:
随着中国近十年包装行业的迅猛发展,中国的油墨产业得到了较大的拓展。十年前各印刷厂主要以胶印油墨为主,而现在已形成了溶剂油墨,水性油墨,UV油墨,丝印油墨,胶印油墨并存的格局。尤其是近几年中国包装业在追求印刷精美的同时,还突出了环保的概念,因此相对环保的水性油墨与UV油墨系列,得到了前所未有的提升。
从中国油墨发展的现状看,溶剂油墨的使用量正在逐步减少,胶印油墨产量基本上保持稳定,UV系列产品和水性油墨则呈上升趋势,而上升最为明显的则是UV油墨系列。这主要体现在UV油墨印刷档次较高,且对设备的选择余地较大;而水性油墨只能在柔版或凹版上印刷,且水性产品需进口高档设备才能印出精细效果,目前水性油墨的市场还基本停留在中低档纸箱上面。
从油墨未来的发展方向来看,溶剂油墨正在向醇溶性及低溶剂过渡;UV油墨目前正在致力于UV双重固化的研发;
胶印油墨的发展仍是以无水胶印为发展方向;水性油墨目前已开始向塑料等食品行业倾斜。今后油墨的发展目标是积极开发各种环保水性和UV油墨。
4.3.3 胶粘剂行业
到2011年中国已跨入了世界胶粘剂生产和消费大国,产量及销售额高速增长,30年来平均增长率达l9.8%,远高于我国GDP的增长。2009年,我国胶粘剂和密封剂(不含脲醛胶、酚醛胶和三聚氰胺甲醛胶)的总产量达到376.3万吨,其中水基型241.8万吨,溶剂型35.6万吨、,热熔型29.3万吨,反应型48.5万吨,其他类型21万吨。2010年胶粘剂产量增至500万吨。根据中国胶粘剂工业协会预测,2011~2015年胶粘剂密封剂产量平均增长速度为10%,到2015年胶粘剂密封剂产量将达到717万吨,销售额达到1,038亿元左右。
胶粘剂的种类繁多,可以分为环氧树脂胶粘剂、酚醛树脂胶粘剂、脲醛树脂胶粘剂、聚氨酯胶粘剂、α-氰基丙烯酸酯胶粘剂、厌氧胶粘剂、改性丙烯酸酯快固结构胶粘剂、不饱和聚酯胶粘剂、氯丁橡胶胶粘剂、4115建筑胶、107胶、溶剂型压敏胶、溶剂型纸塑复合胶、PVC塑溶胶等。 不同胶粘剂中存在的挥发性有机化合物差异很大,如溶剂型胶粘剂中的有机溶剂;三醛胶 (酚醛、脲醛、三聚氰胺甲醛)中的游离甲醛;不饱和聚酯胶粘剂中的苯乙烯;丙烯酸酯乳液胶粘剂中的未反应单体;改性丙烯酸酯快固结构胶粘剂中的甲基丙烯酸甲酯;聚氨酯胶粘剂中的多异氰酸酯;4115建筑胶中的甲醇等。胶粘剂中的挥发性有机物主要是苯、甲苯、甲醛、甲醇、苯乙烯、三氯甲烷、四氯化碳、1,2-二氯乙烷、甲苯二异氰酸酯、间苯二胺、磷酸三甲酚酯、乙二胺、二甲基苯胺等。
4.4 含VOCs产品使用过程的清洁生产工艺 4.4.1 涂装行业 (1)汽车涂装
近几年,我国新建的大型汽车涂装线大都已经考虑了使用环保型涂料的可能性。汽车行业中采用水性漆、固体粉状漆代替部分溶剂型漆,选用更环保的溶剂型漆等。在欧洲,从20世纪90年代开始新建的涂装生产线上均已采用水性涂料,涂装VOCs排放量已低于法规要求(<35g/m2)。在欧美及日本大部分汽车厂底漆已全部采用了低VOCs挥发量(0.4%~0.8%)型阴极电泳底漆或粉末涂料,我国部分汽车厂也已经开始应用。中涂采用水性涂料或高固体份材料,面漆采用水性底色加高固体份清漆,粉末清漆也已经用于轿车车身涂装,欧美的环保型涂料及涂装技术已经十分成熟,车身涂装用环保型中涂及面漆在我国尚未普及应用。
随着涂装材料的进步,车身喷涂工艺也有了革命性的进展,在满足环保法规的同时,也提高了生产效率,降低了涂装成本。主要的清洁喷涂工艺包括:
①逆过程工艺:根据粉末涂料一次成膜厚的特点,在车身外表面先喷涂粉末涂料,热熔融后,再进行电泳涂装,随后粉末、电泳涂膜一起烘干。其优点是约可减少60%的电泳涂料用量,用粉末涂层替代车身外表面的电泳底漆和中涂层,取消中涂及烘干工序。②二次电泳工艺:采用两涂层电泳材料,用第二层电泳替代中涂,电泳工艺自动化施工稳定可靠且一次合格率高,材料利用率高,设备投资少,不需空调系统,减少传统中涂的漆渣。③一体化涂装工艺:采用与面漆同色的功能层替代中涂,功能层与面漆底色间不需烘干、取消中涂线。④敷膜技术替代涂装:将预制好的复合涂膜在塑料件浇注成型的同时完成成型并与塑料件熔为一体,得到无缺陷涂装覆盖件。车身骨架采用传统冲压焊装工艺制造,涂装车间只对车身骨架进行涂装,工艺为前处理、阴极电泳、密封、面漆,面漆采用粉末喷涂技术,车身涂装的VOCs排放达到7g/m2左右,远低于欧洲排放法规要求。⑤“零排放”油漆车间:“零排放”是在满足苛刻的环保要求和用户质量要求的前提下,尽量减少三废处理成本、油漆车间操作成本和简化油漆工艺。车身钢板的防腐底漆保护层在制成零件前的涂覆可在钢厂进行。进入油漆车间的车身不需再涂底漆,只喷涂一道粉末底色和一道粉末罩光。目前除车身制造技术未成熟外,其他技术都已过关。 (2)其他工业涂装
造船、桥梁、集装箱、家具等行业的喷涂用涂料因其应用方向不同,涂料中含的VOCs成分各异。使用符合环境标志产品技术要求的水性涂料,是涂装行业降低VOCs排放的根本性方向。此外,涂装工艺的改进也可以减少VOCs的排放。采用的涂装工艺类型众多,既有涂装效率较高的静电喷涂、淋涂、辊涂、浸涂,也有涂装效率较低的空气喷涂、滚刷涂和手工涂装。其中采用普通空气喷涂和手工涂装的数量最多。鼓励采用涂装效率较高的涂装工艺进行密闭涂装。
4.4.2 包装印刷行业
包装印刷行业包括了包装材料的制造(复合)和各类印刷过程(印纸、印塑、印铁等),印刷工艺包括凸版印刷、平板印刷、凹版印刷、柔版印刷、孔印刷(丝网印刷)等。其中,VOCs排放最多的主要是干复工艺、凹印工艺及印制铁罐领域。
软包装的复合工艺目前国内还是以干复工艺为主,在国外无溶剂复合工艺达60%,已经成为主流工艺,而国内无溶剂复合工艺不到5%,如果达到国外水平,VOCs的减排量可以达到25万吨左右。
凹版印刷工艺VOCs的排放量所占比例最大。凹印油墨要保持较好的印刷性,必须加入较大比例(通常为30%~70%)的有机溶剂,主要是甲苯、醋酸乙酯、丁酮、异丙醇等。目前的清洁生产工艺主要为醇性(无苯、无酮)油墨和水性油墨的使用。在印刷工艺上推荐通过采用环保型油墨的印刷工艺代替污染严重的印刷工艺,如采用醇溶性油墨的柔版印刷代替传统的凹版印刷工艺,会大大降低VOCs的排放。
印铁产品主要应用在三片罐(罐头食品、奶粉罐、化工杂罐、气雾罐)和金属盖(皇冠盖、铝防盗盖、易开盖、
旋开盖)。传统印铁涂料固体份为40%~60%,而UV涂料固体份为97.5%±2.5%,远高于传统印铁涂料,降低了VOCs的产生水平,应该在实际生产中大力推广使用。
5 典型行业排污与适用的末端治理技术 5.1 油气回收
石油化工行业的VOCs排放主要集中在过程的跑冒滴漏、过程中间储罐排放、装车船过程排放、加油过程排放等,首先考虑通过对设备升级改造、对VOCs排量大的汽油储罐通过采用浮顶罐代替固定顶罐、密闭装车、加油枪带回气系统等方式外,还需对油气进行回收。
通用的油气治理方法很多,主要包括吸收、蓄热氧化、吸附、冷凝和膜分离方法。耦合的油气回收技术,大体包括吸附-吸收法、冷凝-吸附法、吸收-膜分离法、冷凝-膜分离法、冷凝-膜分离法-吸附法等技术。
需要鼓励研发的设备与技术包括,适用于高浓度小气量气体的技术设备:沸点小于80℃的低沸物,采用深冷的冷凝-吸附技术;对于沸点在80℃以上的相对高沸物,采用浅冷的冷凝-吸附技术。适于低浓度大气量气体的技术设备:主要针对化工厂生产过程排放的工艺废气,采用吸附-不同冷凝温度的回收处理技术,包括废气中含有粉尘等的前处理技术。适于槽车清洗过程的技术设备:高压水清洗过程产生废气和高压蒸汽或蒸汽射流过程产生含有水汽废气处理技术。
5.2包装印刷 5.2.1产污环节与现状
包装印刷过程中VOCs的产生情况如表14所示,其中VOCs排放量大且需要末端治理措施的为复合膜干复工艺和凹印工艺。
5.2.2末端治理技术
在复合膜的干复工艺中,一般一条生产线的废气排放量约为10000m3/h,溶剂量使用量约为500~600kg/天,排气中有机物浓度约为2000~2400mg/m3,采用活性炭纤维吸附回收装置对废气中的乙酸乙酯进行回收。按回收效率80%计算,一条生产线一天可以回收乙酸乙酯400~500kg,一年可以回收乙酸乙酯144~180吨(按360天计)。
对于印刷废气,国内多采用颗粒活性炭吸附回收和蜂窝活性炭吸附浓缩-催化燃烧技术进行治理。采用颗粒活性炭吸附回收,回收的混合物中含有醇类等水溶性有机化合物,需要进行精馏提纯,废气的治理成本较高,这成为制约印刷废气吸附回收的瓶颈。在印刷企业相对集中的地区建立统一的溶剂回收中心,对回收的溶剂集中处理,可以大大降低治理的费用。蜂窝活性炭吸附浓缩-催化燃烧技术设备运行费用较高,大量的有机溶剂被焚烧,另外由于大量酮类混合物的存在,活性炭床层在采用热风再生时存在安全隐患,目前在印刷行业中所建的蜂窝活性炭吸附浓缩-催化燃烧治理装置实际上运行率较低。
5.3 汽车制造 5.3.1产污环节与现状
汽车制造过程中最大的产VOC环节是涂装工艺。汽车车身涂层工艺主要包括底漆、中涂和面漆以及最后的烘干工艺,工艺流程见图11。有机气态污染物主要产生于电泳底漆、中涂和面漆的喷涂及烘干过程和塑料件加工的涂漆工序。在中涂和面漆喷漆过程中,大约80%~90%的VOCs是在喷漆室和流平室排放,10%~20%的VOCs随车身涂膜在烘干室中排放。废气成分按排放量大小依次为苯类、醇类、脂类和酮类。由于所使用油漆的种类不同,不同车辆和不同厂家生产工艺也有区别,所产生的废气中VOCs的成分也有所差别。
汽车喷涂工艺废气排放特征:①排风量大。通常都在几十万到上百万m3/h之间,可分为多个排放口排放。②废气浓度低。有机物浓度一般在100~200mg/ m3之间,但总的排放量大。按照100万m3/h、150 mg/ m3计算,每小时的排放量可达150Kg/h或3.6吨/天。③含有漆雾。喷涂工艺废气中漆雾含量一般在一百到几百毫克每立方米,通常采用水幕过滤去除漆雾(产生大量的含有有机物的漆渣),但去除效率不高。在进行吸附治理之前,通常需要进一步的机械过滤处理。④温度为常温。⑤湿度大。经过水幕过滤以后所排出的废气中会夹杂部分水雾,相对湿度提高,不利于下一步的吸附净化。
5.3.2末端治理技术
末端治理工艺路线为水幕过滤后进行除湿,再经过吸附浓缩-催化燃烧处理。
水幕过滤:喷漆房的水幕过滤技术成熟,已有相关设计规范。水幕过滤所产生的漆渣由于含有大量的有机物,需要定期清理后作为固体废弃物进行专门处理。
过滤除湿:一般采用粗滤器和中效滤器两步进行过滤,可以采用两个滤器,也可以两步合为一个滤器。粗滤器采用纤维毡过滤材料,中效滤器采用袋式过滤。如果前段的水幕过滤效果较差,有时在粗滤器之前加装一个金属丝网过滤器,进一步去除漆雾。经过后端的中效滤器过滤后废气中的颗粒物含量降低到0.1mg/m3以下。对于喷涂废气,无论采用何种技术进行治理,关键在于漆雾的过滤效果。
吸附浓缩-催化燃烧技术:对于汽车喷涂废气,由于低浓度、大风量的特点,同时不含引起催化剂中毒的物质,最为常用和有效的方法是采用吸附浓缩+催化燃烧治理技术。根据吸附材料和吸附方式的不同,可以分为沸石转轮(或转筒)吸附浓缩+蓄热催化燃烧(RCO)技术和蜂窝状活性炭固定床吸附浓缩+催化燃烧技术两种方式。国外多采用沸石转轮(或转筒)吸附浓缩+蓄热催化燃烧(RCO)技术,净化效率高(90%以上),运行稳定,安全性好,但设备费用较高。国内多采用蜂窝状活性炭固定床吸附浓缩+催化燃烧技术,净化效率高(90%以上),投资费用较低,但安全性较差,在活性炭再生过程中存在着火等隐患,需要对再生过程严格控制。
5.4 光电产品制造 5.4.1产污环节与现状
在光电产品制造行业中,产生废气污染的主要有五类产品的生产过程:半导体集成电路、TFT-LCD、LED、印制电路板(PCB)、电子终端产品。 (1)半导体集成电路
半导体制造工艺中VOCs主要来源于光刻、显影工序,在这些工序中要用有机溶液(如异丙醇)对晶片表面进行清洗,其挥发产生的废气是有机废气的来源之一。同时,在光刻过程中使用的光阻剂(光刻胶)中含有易挥发的有机溶剂,如乙酸丁酯等,在晶片处理过程中产生的有机废气也要挥发到大气中,是VOCs产生的又一来源。 (2)TFT-LCD
包括检查和测试在内,TFT-LCD的制造生产工艺可达到100多道工序,生产过程中使用多种化学有机溶剂和特殊气体,产生的VOCs量大,组分复杂。TFT液晶面板生产排放VOCs污染物的工序主要集中在阵列工程和彩膜工程两大部分。阵列工程中的光刻(涂胶、曝光和显影),以及彩膜工程中的黑色矩阵BM膜制造、彩色矩阵膜形成(红、绿、蓝,RGB)、保护膜生成、MVA膜、PS(PHoto Spacer)膜生成是产生VOCs的主要工艺。同时,在成盒工程中清洗工序使用的有机溶剂挥发也会产生少量的VOCs。TFT-LCD的制造过程中产生的VOCs主要是以异丙醇为主,其次依序是丙酮、单甲基醚丙二醇、单甲基醚丙二醇乙酸酯,这四种成分占了全部VOCs量的90%以上。 (3)LED LED电子组件生产产生的VOCs污染物主要来源于基片处理和光刻,LED生产过程中产生VOCs的种类主要有三氯乙烯、丙二醇醚酯、异丙醇、丙酮、丁酮等,具体见表15。
表15 LED生产中废气污染源与主要污染物分析表