好文档 - 专业文书写作范文服务资料分享网站

北师大版九年级数学上册和下册定理知识点汇总

天下 分享 时间: 加入收藏 我要投稿 点赞

北师大版初中九 (上)数学知识点总结

第一章 证明(二)

※等腰三角形的“三线合一”:顶角平分线、底边上的中线、底边上的高互相重合。

※等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的 直角三角形,其中一个锐角等于30o,这它所对的直角边必然等于斜边的一半。 ※有一个角等于60o的等腰三角形是等边三角形。

※如果知道一个三角形为直角三角形首先要想的定理有: ①勾股定理:a2?b2?c2(注意区分斜边与直角边)

②在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半

③在直角三角形中,斜边上的中线等于斜边的一半(此定理将在第三章出现) ※垂直平分线是垂直于一条线段并且平分这条线段的直线。(注意着重号的意义) <直线与射线有垂线,但无垂直平分线>

※线段垂直平分线上的点到这一条线段两个端点距离相等。 ※线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。

※三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。(如

A A 图1所示,AO=BO=CO)

F D O O

C C

E B B 图2 图1

※角平分线上的点到角两边的距离相等。

※角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。

角平分线是到角的两边距离相等的所有点的集合。

※三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。

(如图2所示,OD=OE=OF)

第二章 一元二次方程

※只含有一个未知数的整式方程,且都可以化为ax2?bx?c?0(a、b、c为 常数,a≠0)的形式,这样的方程叫一元二次方程。

※把ax2?bx?c?0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a

为二次项系数;b为一次项系数;c为常数项。 ※解一元二次方程的方法:

①配方法 <即将其变为(x?m)2?0的形式>

?b?b2?4ac②公式法 x? (注意在找abc时须先把方程化为一般形式)

2a③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)

※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;

②将二次项系数化成1;

③把常数项移到方程的右边;

④两边加上一次项系数的一半的平方;

⑤把方程转化成(x?m)2?0的形式;

⑥两边开方求其根。

※根与系数的关系:当b-4ac>0时,方程有两个不等的实数根;

当b2-4ac=0时,方程有两个相等的实数根; 当b2-4ac<0时,方程无实数根。

2

※如果一元二次方程ax2?bx?c?0的两根分别为x1、x2,则有:

bcx1?x2?。

aa※一元二次方程的根与系数的关系的作用: (1)已知方程的一根,求另一根;

(2)不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式: x1?x2??2?(x1?x2)2?2x1x2 ②①x12?x211x1?x2?? ③x1x2x1x2(x1?x2)2?(x1?x2)2?4x1x2

|x1?x2|?(x1?x2)2?4x1x2 ⑤

(|x1|?|x2|)2?(x1?x2)2?2x1x2?2|x1x2|

3?(x1?x2)3?3x1x2(x1?x2) ⑦其他能用x1?x2或x1x2表达的⑥x13?x2代数式。

(3)已知方程的两根x1、x2,可以构造一元二次方程:x2?(x1?x2)x?x1x2?0 (4)已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方

程x2?(x1?x2)x?x1x2?0 的根

※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,

大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。 ※处理问题的过程可以进一步概括为: 问题分析求解?方程?解答 抽象检验第三章 证明(三)

※平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不

相邻的两顶点连成的线段叫做它的对角线。

※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。 ※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。

两组对边分别相等的四边形是平行四边形。 一组对边平行且相等的四边形是平行四边形。 两条对角线互相平分的四边形是平行四边形。

※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一

条直线的距离相等。这个距离称为平行线之间的距离。

菱形的定义:一组邻边相等的平行四边形叫做菱形。

※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平

分,每一条对角线平分一组对角。

菱形是轴对称图形,每条对角线所在的直线都是对称轴。

※菱形的判别方法:一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。 四条边都相等的四边形是菱形。

※矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。 ※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩

形是轴对称图形,有两条对称轴)

※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。

对角线相等的平行四边形是矩形。 四个角都相等的四边形是矩形。

※推论:直角三角形斜边上的中线等于斜边的一半。 正方形的定义:一组邻边相等的矩形叫做正方形。

※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)

※正方形常用的判定:有一个内角是直角的菱形是正方形;

邻边相等的矩形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。

正方形、矩形、菱形和平行边形四者之间的关系(如图3所示): ※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。 ※两条腰相等的梯形叫做等腰梯形。 ※一条腰和底垂直的梯形叫做直角梯形。

平行四边形 一内角为直角 一组邻边相等 菱形 一个内角为直角 (或对角线相等) 正方形 一组邻边相等且一个内角为直角 (或对角线互相垂直平分) 矩形 一邻边相等 或对角线垂直 鹏翔教图3

※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。 同一底上的两个内角相等的梯形是等腰梯形。

※三角形的中位线平行于第三边,并且等于第三边的一半。 ※夹在两条平行线间的平行线段相等。

※在直角三角形中,斜边上的中线等于斜边的一半

第四章 视图与投影

※三视图包括:主视图、俯视图和左视图。

三视图之间要保持长对正,高平齐,宽相等。一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边。

主视图:基本可认为从物体正面视得的图象 俯视图:基本可认为从物体上面视得的图象 左视图:基本可认为从物体左面视得的图象

※视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上。

※在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体)。 ※在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。

物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影。 太阳光线可以看成平行的光线,像这样的光线所形成的投影称为平行投影。 探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中心投影。

※区分平行投影和中心投影:①观察光源;②观察影子。

眼睛的位置称为视点;由视点发出的线称为视线;眼睛看不到的地方称为盲区。 ※从正面、上面、侧面看到的图形就是常见的正投影,是当光线与投影垂直时的投影。

①点在一个平面上的投影仍是一个点;

②线段在一个面上的投影可分为三种情况: 线段垂直于投影面时,投影为一点;

线段平行于投影面时,投影长度等于线段的实际长度; 线段倾斜于投影面时,投影长度小于线段的实际长度。 ③平面图形在某一平面上的投影可分为三种情况:

平面图形和投影面平行的情况下,其投影为实际形状; 平面图形和投影面垂直的情况下,其投影为一线段;

平面图形和投影面倾斜的情况下,其投影小于实际的形状。

第五章 反比例函数

※反比例函数的概念:一般地,y?k(k为常数,k≠0)叫做反比例函数,即yx是x的反比例函数。

(x为自变量,y为因变量,其中x不能为零)

k※反比例函数的等价形式:y是x的反比例函数 ←→ y?(k?0) ←→

xy?kx?1(k?0) ←→ xy?k(k?0) ←→ 变量y与x成反比例,比例系数为

k.

※判断两个变量是否是反比例函数关系有两种方法:①按照反比例函数的定义判断;②看两个变量的乘积是否为定值<即xy?k>。(通常第二种方法更适用) ※反比例函数的图象由两条曲线组成,叫做双曲线

※反比例函数的画法的注意事项:①反比例函数的图象不是直线,所“两点法”是不能画的;

②选取的点越多画的图越准确;

③画图注意其美观性(对称性、延伸特征)。

※反比例函数性质:

①当k>0时,双曲线的两支分别位于一、三象限;在每个象限内,y随x的增

大而减小;

②当k<0时,双曲线的两支分别位于二、四象限;在每个象限内,y随x的增大而增大;

③双曲线的两支会无限接近坐标轴(x轴和y轴),但不会与坐标轴相交。 ※反比例函数图象的几何特征:(如图4所示)

11S?AOB?|xy|?|k| 点P(x,y)在双曲线上都有S矩形OAPB?|xy|?|k|22 B O P A 图4 P B A O

0x0x51fsw93fre38hic91cf865brly010p1
领取福利

微信扫码领取福利

微信扫码分享