一、初一数学一元一次方程解答题压轴题精选(难)
1.数轴上 , 两点对应的数分别为 , ,且满足 (1)求 , 的值;
(2)若点 以每秒 个单位,点 以每秒 个单位的速度同时出发向右运动,多长时间后 , 两点相距 个单位长度?
(3)已知 从 向右出发,速度为每秒一个单位长度,同时 从 向右出发,速度为每秒 个单位长度,设 由.
【答案】 (1)解:∵|a+6|+(b﹣12)2=0,∴a+6=0,b﹣12=0,∴a=﹣6,b=12 (2)解:设x秒后A,B两点相距2个单位长度,根据题意得:|(2x+12)﹣(3x﹣6)|=2,解得:x1=16,x2=20.
答:16秒或20秒后A,B两点相距2个单位长度
的中点为 ,
的值是否变化?若不变求其值;否则说明理
;
(3)解:当运动时间为t秒时,点M对应的数为t﹣6,点N对应的数为2t+12. ∵NO的中点为P,∴PO= NO=t+6,AM=t﹣6﹣(﹣6)=t,∴PO﹣AM=t+6﹣t=6,∴PO﹣AM为定值6.
【解析】【分析】(1)根据绝对值和平方的非负性,求出a、b的值即可;(2)根据题意列出方程,求出含绝对值方程的解;(3)根据题意得到点M对应的数为t﹣6,点N对应的数为2t+12,再由NO的中点为P,得到PO、AM的代数式,得到PO﹣AM的值.
2.下列图表是 2017 年某校从参加中考体育测试的九年级学生中随机调查的 10 名男生跑 1000 米和 10 名女生跑 800米的成绩.
(1)按规定,女生跑 800 米的时间不超过 3'24\就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。 若能,求出发多长时间才能相遇;若不能,说明理由.
【答案】 (1)解:设男生有x人,女生有(x+70)人, 由题意得:x+x+70=490, 解得:x=210,
则女生x+70=210+70=280(人). 故女生得满分人数:
(人)
(2)解:不能;
假设经过x分钟后,1号与10号在1000米跑中能首次相遇,根据题意得:
解得 又∵
∴考生1号与10号不能相遇。
【解析】【分析】(1)通过男生、女生的人数关系列出方程,得出女生的人数;(2)根据题意表达出1号跟10号的速度,两位若相遇,相减的路程为400米,得出的时间为4.8, 但是4.8分钟大于3分钟,所以两位在测试过程中不会相遇。
3.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.
(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式; (2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?
【答案】 (1)解:设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,据题意,得 49+3x=100. 解得,x=17. 64+2y=100. 解得,y=18. 因为y>x,
所以,进入该公园次数较多的是B类年票. 答:进入该公园次数较多的是B类年票
(2)解:设进入该公园z次,购买A类、B类年票花钱一样多.则根据题意得 49+3z=64+2z. 解得z=15.
答:进入该公园15次,购买A类、B类年票花钱一样多
【解析】【分析】(1)设用100元购买A类年票可进入该公园的次数为x次,购买B类
年票可进入该公园的次数为y次,根据总费用都是100元列出方程,并求得x、y的值,通过比较它们的大小即可得到答案;(2)设进入该公园z次,购买A类、B类年票花钱一样多.根据题意列方程求解.
4.已知:如图所示,O为数轴的原点,A,B分别为数轴上的两点,A点对应的数为﹣30,B点对应的数为100.
(1)A、B的中点C对应的数是________;
(2)若点D数轴上A、B之间的点,D到B的距离是D到A的距离的3倍,求D对应的数.(提示:数轴上右边的点对应的数减去左边对应的数等于这两点间的距离); (3)若P点和Q点是数轴上的两个动点,当P点从B点出发,以6个单位长度/秒的速度向左运动时,Q点也从A点出发,以4个单位长度/秒的速度向右运动,设两点在数轴上的E点处相遇,那么E点对应的数是多少? 【答案】 (1)35
(2)解:设点D对应的数是x,则由题意, 得100﹣x=3[x﹣(﹣30)] 解得,x=2.5
所以点D对应的数是2.5.
(3)解:设t秒后相遇, 由题意,4t+6t=130, 解得,t=13, BE=100﹣6t=78, 100﹣78=22
答:E点对应的数是22.
【解析】【解答】解:(1)点A表示的数是﹣30,点B表示的数是100, 所以AB=100﹣(﹣30)=130 因为点C是AB的中点, ∴AC=BC=
=65
A、B的中点C对应的数是100﹣65=35. 故答案为:35.
【分析】(1)根据点A和点B的坐标,求出AB之间的距离,取其中点,找出C点对应的数字即可。
(2)根据题意,可以设点D对应的数为x,根据其与AB两点之间的距离关系,列出方程解出x的值,即可得到D点对应的坐标。
(3)根据题意设二者相遇的时间为t,根据二者运动的距离之和为线段AB的长度列出方程,解出t的值,即可得到E点对应的数。
5.某城市平均每天产生垃圾700 t,由甲、乙两家垃圾处理厂处理.已知甲厂每小时可处理垃圾55 t,费用为550元;乙厂每小时可处理垃圾45 t,费用为495元. (1)如果甲、乙两厂同时处理该城市的垃圾,那么每天需几小时?
(2)如果该城市规定每天用于处理垃圾的费用不得高于7370元,那么至少安排甲厂处理几小时?
【答案】 (1)解:设两厂同时处理每天需xh完成, 根据题意,得(55+45)x=700,解得x=7. 答:甲、乙两厂同时处理每天需7 h.
(2)解:设安排甲厂处理y h, 根据题意,得550y+495× 解得y≥6. ∴y的最小值为6. 答:至少安排甲厂处理6 h.
【解析】【分析】(1)设甲、乙两厂同时处理,每天需x小时,根据甲乙两厂同时处理垃圾每天需时=每天产生垃圾÷(甲厂每小时可处理垃圾量+乙厂每小时可处理垃圾量),列出方程,求出x的值即可;
(2)设甲厂需要y小时,根据该市每天用于处理垃圾的费用=甲厂处理垃圾的费用+乙厂处理垃圾的费用,每厂处理垃圾的费用=每厂每小时处理垃圾的费用×每天处理垃圾的时间,列出不等式,求出y的取值范围,再求其中的最小值即可.
≤7370,
6.某校七年级10个班师生举行文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,七年级统计后发现歌唱类节目比跳舞类节目数的2倍少4个. (1)七年级师生表演的歌唱与舞蹈类节目数各有多少个?
(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从开始到结束共用2小时35分钟,问参与的小品类节目有多少个?
【答案】 (1)解:设七年级师生表演的舞蹈类节目有x个,表演歌唱类节目有(2x﹣4)个,
根据题意,得:x+2x﹣4=10×2, 解得:x=8, 所以2x﹣4=12.
答:七年级师生表演的歌唱类节目有12个,舞蹈类节目有8个
(2)解:设参与的小品类节目有a个, 根据题意,得:12×5+8×6+8a+15=2×60+35, 解得:a=4,
答:参与的小品类节目有4个
【解析】【分析】(1)设七年级师生表演的舞蹈类节目有x个,表演歌唱类节目有 (2x-4)个.根据“七年级统计后发现歌唱类节目比跳舞类节目数的2倍少4个”列方程求解可得;(2)设参与的小品类节目有a个,根据“三类节目的总时间+交接用时=2小时35分钟”列等式求解可得.
7.试根据图中信息,解答下列问题.
(1)一次性购买6根跳绳需________元,一次性购买12根跳绳需________元; (2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由. 【答案】 (1)150;240
(2)解:设小红购买x跳绳根,那么小明购买(x-2)根跳绳, 25x×0.8=25(x-2)-5, 解得: x=11; 小明购买了:11-2=9根. 答:小红购买11根跳绳.
【解析】【解答】解:(1)一次性购买6根跳绳需25×6=150(元); 一次性购买12根跳绳需25×12×0.8=240(元); 故答案为:150;240.
【分析】(1)根据单价×数量=总价,求出6根跳绳需多少元;购买12根跳绳,超过10根,打八折是指现价是原价的80%,用单价×数量×0.8即可求出购买12根跳绳需多少元;(2)有这种可能,可以设小红购买x跳绳根,那么小明购买x-2根跳绳,列出方程25x×0.8=25(x-2)-5,解答即可.
8.已知线段AB=60cm.
(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点 向A点以4厘米/秒运动,问经过几秒后P、Q相遇? (2)在(1)的条件下,几秒钟后,P、Q相距12cm?
(3)如图2,AO=PO=10厘米,∠POB=40°,点P绕着点O以10度/秒的速度顺时针 旋转一周停止,同时点Q沿线段BA自B点向A点运动,假若点P、Q两点能相遇,求点Q