5.3.2 诱导公式(二)
一、选择题
1?π?1.如果cos(π+A)=-,那么sin?+A?等于( ) 2?2?A.-12 B.1
2 C.-332 D.2
解析:cos(π+A)=-cos A=-12,
∴cos A=1
2
,
∴sin??π?2+A???=cos A=12. 答案:B
2.下列式子与sin???θ-π2???相等的是( ) A.sin?
?π?2+θ??? B.cos??π?2+θ???
C.cos??3?2π-θ??? D.sin??3?2π+θ???
解析:因为sin???θ-π2???=-sin??π?2-θ???
=-cos 对于A,sin??π?2+θ???=cos θ;
对于B,cos??π?2+θ???
=-sin θ; 对于C,cos??3π?2-θ???=cos???π+??π?2-θ?????
?
=-cos??π?2-θ???
=-sin θ; 对于D,sin??3π?2+θ???=sin???π+??π?2+θ?????
?
=-sin??π?2+θ???
=-cos θ. 答案:D
,
1
θ ?π?sin?+θ?-cos?π-θ??2?
3.已知tan θ=2,则等于( )
π??sin?+θ?-sin?π-θ??2?
A.2 B.-2 2
C.0 D.
3
?π?sin?+θ?-cos?π-θ?
cos θ+cos θ22?2?
解析:====-2.
πcos θ-sin θ1-tan θ1-2??sin?+θ?-sin?π-θ??2?
答案:B
4.若角A,B,C是△ABC的三个内角,则下列等式中一定成立的是( ) A.cos(A+B)=cos C B.sin(A+B)=-sin C C.cos
A+C2
=sinB D.sin
B+C=cos 22
A解析:∵A+B+C=π,∴A+B=π-C, ∴cos(A+B)=-cos C,sin(A+B)=sin C, 故A,B错; ∵A+C=π-B,∴∴cosA+Cπ-B2=2
,
A+C2
=cos?
?π-B?=sinB,故C错;
?2?22?
B+CA?πA?=sin?-?=cos,故D对. 22?22?
∵B+C=π-A,∴sin答案:D 二、填空题
5π?5?5.若cos α=-,且α是第三象限角,则cos?α+?=________.
2?13?
5π?512?解析:因为cos α=-,且α是第三象限角,所以sin α=-,cos?α+?=
2?1313?π?12?cos?α+?=-sin α=.
2?13?
12答案: 13
?3π?tan?2π-α?cos?-α?cos?6π-α??2?
6.求=________.
3π??3π??sin?α+?cos?α+?2??2??
2
解析:原式=tan?-α??-sin α?cos?-α?
?-cos α?·sin α =
-tan α?-sin α?cos α-cos α·sin α=-tan α.
答案:-tan α
7.已知cos α=1π?3,则sin???α-2??·cos??3π?2+α???tan(π-α)=________. 解析:sin???α-π2???cos??3π?2+α???tan(π-α)
=-cos αsin α(-tan α)=sin2
α=1-cos2
α
=1-??1??3?2?=8
9
. 答案:89 三、解答题
8.已知cos??π?6-α??2
?=3
,求下列各式的值:
(1)sin?
?π?3+α???
; (2)sin???
α-2π3???
解析:(1)sin??π?3+α???=sin??π?π???2-??6-α????
=cos??π?6-α??2
?=3
. (2)sin???α-2π3???=sin??π?π???-2-??6
-α????
=-sin??π?π???2+??6
-α????
=-cos??π?6-α???=-23. 9.化简:
(1)cos?α-π?sin?π-α?·sin???α-π2???cos??π?2+α???
;
(2)sin(-α-5π)cos???α-π2???-sin??3π?2+α???cos(α-2π). 解析:
(1)原式=cos[-?π-α?]sin α·sin???-??π?2-α??????
(-sin α)
3
=cos?π-α?sin α·???-sin??π?2-α??????(-sin α) =
-cos αsin α·(-cos α)(-sin α)
=-cos2
α.
(2)原式=sin(-α-π)cos???-??π?2-α??????+cos αcos[-(2π-α)] =sin[-(α+π)]cos??π?2-α???
+cos αcos(2π-α) =-sin(α+π)sin α+cos αcos α =sin2
α+cos2
α =1.
尖子生题库]
10.在△ABC中,已知sinA+B-CA-B+C2
=sin2
,试判断△ABC的形状.解析:∵A+B+C=π,
∴A+B-C=π-2C,A-B+C=π-2B. 又sin
A+B-CB+C2
=sin
A-,∴sinπ-2Cπ-22=sin2B2
,
∴sin??π?2-C???=sin??π?2-B???
,∴cos C=cos B,
又B,C为△ABC的内角,∴C=B, 故△ABC为等腰三角形. 4
[