本文来源:网络收集整理\\word可编辑
行测技巧:快速解不定方程
在考场上人与人拉开差距的除了平常的知识点的积累,还有面对考试题型能够有一个更好的解答思路,下面由我为你精心准备了“行测技巧:快速解不定方程”,持续关注本站将可以持续获取更多的考试资讯!
行测技巧:快速解不定方程
方程可以说是解决数学问题的“万精油”,不管是国考省考市考,还是事业单位特殊岗位,行测考试中方程出现的频率可谓是越来越高,很多同学对于方程也是又爱又恨,最头疼的问题是莫过于能列出方程,却解不出来。接下来就教大家快速解一类特殊的方程——不定方程。
首先我们看这样一个式子:2x+3y=10,类似这样未知数的个数大于独立方程得个数的方程就叫做不定方程了,那这类式子按道理应该是无数组解,为什么可以快速解出答案呢?这就要说明一下我们这里的解是在正整数的范围内求解,因为一般这样的解会有一个限定条件,比如人的个数,汽车的辆数,羊的头数,他们都是一个正整数,所以我们才可以快速解出答案。
方法一:整除法
秒解特征:未知数的系数与常数项有公约数 【例题1】:3x+7y=56,x和均为正整数,x为() A、5 B、6 C、7 D、8
【解析】C,通过观察发现,7y 和56都可以被7整除,所以3x也可以被7整除,然而3不能被7整除,所以x一定可以被7整除,所以选择答案C。
方法二:奇偶性
秒解特征:未知数的系数一奇一偶
【例题2】:3x+4y=23,x,y均为正整数,x为()
本文来源:网络收集整理\\word可编辑
A、2 B、 5 C、6 D、7
【解析】B,通过观察发现,4y是一个偶数,23是一个奇数,所以3x一定是一个奇数,所以x一定为奇数,排除A,C答案,代入B答案,此时y=2,符合题意,所以选择答案B。
方法三:特值法
秒解特征:求解不定式方程组中表达式的值
【解析】B,题干中最后求解x+y+z为一个定值,所以前面的x,y,z的取值都不会对后面的结果产生影响,所以我们取z=0,则可以得到x=50,y=50,所以x+y+z=100。
总的来说,解决不定方程的难度不大,要想快速解决问题,只需要找到题干中的特征,运用相对应的办法,就可以快速得出答案!