计量经济学综合实验报告
一、 一元线性回归检验
一个国家的货物周转量与货运量是密不可分的,为了考察货物周转量与货运量之间的关系,利用计量经济学的方法,进行回归分析。中国1990—2009年货运量与货运周转量的数据如表1.1所示。
表1.1 中国的货运量与货运周转量 年份 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
货运量X 货物周转量Y(万吨) (亿吨公里) 970602 985793 1045899 1115902 1180396 1234938 1298421 1278218 1267427 1293008 1358682 1401786 1483447 1564492 1706412 1862066 2037060 2275822 2585937 2825222
26208 27987 29218 30647 33435 35909 36590 38385 38089 40568 44321 47710 50686 53859 69445 80258 88840 101419 110300 122133.3
数据来源:《中国交通年鉴》(2009)整理
1、 建立模型
Y=???X??
根据表一数据,为对其进行线性回归分析,建立如下一元回归模型:
表1.2给出了采用Eviews软件对表1.1数据进行最小二乘线性回归分
析的结果。
表1.2 中国货运周转量对货运量的回归分析(1990--2009)
Dependent Variable: Y Method: Least Squares Sample: 1990 2009 Included observations: 20 Variable C X R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Coefficient -30611.52 0.055839 Std. Error 2621.031 0.001616 t-Statistic -11.67919 34.55122 Prob. 0.0000 0.0000 29604.40 19.36846 19.46803 1193.787 0.000000 0.985146 Mean dependent var 55300.37 0.984321 S.D. dependent var 3706.977 Akaike info criterion 2.47E+08 Schwarz criterion -191.6846 F-statistic 0.705251 Prob(F-statistic)
根据表1.2写出如下回归分析结果:
Y=-30611.52?0.0558X
(-11.68) (34.55)
31 F?1193.787, D.W.?0.705 R2?0.985,
其中括号内的数为相应参数的t检验值,R2为可决系数,F为方程整体线性显著性检验值,D.W.为模型序列相关性检验值
二、 模型检验
(1) 从回归估计的结果看,模型拟合较好。可决系数R2?0.9851,表
明模型在整体上拟合的非常好。
(2) 而且从常数项和解释变量系数的t检验值看,比给定5%显著性水
平下自由度为n-2=19的临界值2.093都大的多,说明参数值是比较显著的。
(3) 而从F?1193.787可以看出,远远大于模型的整体的线性关系也
是非常显著的。
D.W.?0.7053,在(0,dl=1.2)之间,则应该存在一阶相关关系,利(4)
用拉格朗日乘数法进行二阶相关关系检验得表2.1如下:
表2.1
Breusch-Godfrey Serial Correlation LM Test: F-statistic Obs*R-squared 7.558370 Probability 9.716146 Probability 0.004887 0.007765 Dependent Variable: RESID
Variable C X RESID(-1) RESID(-2) R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Coefficient 171.9513 -0.000141 0.897166 -0.423319 Std. Error 2366.190 0.001521 0.234126 0.285806 t-Statistic 0.072670 -0.092732 3.831975 -1.481140 Prob. 0.9430 0.9273 0.0015 0.1580 0.485807 Mean dependent var -9.19E-12 0.389396 S.D. dependent var 2819.415 Akaike info criterion 1.27E+08 Schwarz criterion -185.0330 F-statistic 2.077498 Prob(F-statistic) 3608.106 18.90330 19.10245 5.038913 0.012008
由表2.1可知,nR2?9.716,该值大于显著性水平为5%,自由度为2的?2分布的临界值?20.05(2)=5.991,由此判断存在二阶序列相关性。再利用拉格朗日乘数法进行三阶相关关系检验,得表2.2: 表2.2
Breusch-Godfrey Serial Correlation LM Test: F-statistic Obs*R-squared Variable C X RESID(-1) RESID(-2) RESID(-3) R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
5.163250 Probability 10.16063 Probability Coefficient -219.0110 9.83E-05 0.823992 -0.212209 -0.274529
Std. Error 2437.122 0.001563 0.252675 0.386183 0.333503
t-Statistic -0.089865 0.062901 3.261077 -0.549503 -0.823168
0.011920 0.017249 Prob. 0.9296 0.9507 0.0053 0.5907 0.4233 3608.106 18.95912 19.20805 3.872437 0.023534
Dependent Variable: RESID
0.508031 Mean dependent var -9.19E-12 0.376840 S.D. dependent var 2848.257 Akaike info criterion 1.22E+08 Schwarz criterion -184.5912 F-statistic 2.051318 Prob(F-statistic)
由表2.2可知,虽然nR2?10.161,仍然比显著性水平为5%,自由度
~的参数不显著,且为3的?2分布的临界值?20.05(3)=7.815要大,但由于et?3D.W.?2.05说明不存在三阶序列相关。
用科克伦—奥科特迭代法对原模型进行修正,并用拉格朗日乘数法进行检验,得表2.3如下:
表2.3
Breusch-Godfrey Serial Correlation LM Test: F-statistic Obs*R-squared 0.981613 Probability 3.152755 Probability 0.415681 0.206723 Dependent Variable: RESID Method: Least Squares
Variable C X X(-1) X(-2) AR(1) AR(2) RESID(-1) RESID(-2) R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Coefficient -418.6797 0.003815 0.011768 -0.016302 1.727024 -0.695450 -1.957545 -0.967688 Std. Error 11658.54 0.033267 0.036623 0.039801 1.297073 0.687141 1.397689 0.935849 t-Statistic -0.035912 0.114677 0.321315 -0.409598 1.331477 -1.012091 -1.400558 -1.034021 Prob. 0.9722 0.9115 0.7562 0.6928 0.2197 0.3411 0.1989 0.3314 0.197047 Mean dependent var -3.90E-07 -0.505537 S.D. dependent var 3382.804 Akaike info criterion 91546893 Schwarz criterion -147.1812 F-statistic 1.947722 Prob(F-statistic) 2756.964 19.39765 19.78394 0.280461 0.944432 由表2.3可看出,修正后的nR2?3.153,该值小于显著性水平为5%,自由度为2的?2分布的临界值?20.05(2)=5.991,由此可以判断模型不再存在
相关关系。
(5) 检验模型是否存在异方差
在表1.2的基础上,利用white检验对模型是否存在异方差进行检
验,得表2.4如下:
表2.4
White Heteroskedasticity Test: F-statistic Obs*R-squared 4.972142 Probability 7.381368 Probability 0.019946 0.024955 Dependent Variable: RESID^2 Method: Least Squares Sample: 1990 2009 Included observations: 20
Variable C X X^2 R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
Coefficient -46078062 58.89039 -1.22E-05 Std. Error 29706420 35.14864 9.47E-06 t-Statistic -1.551115 1.675467 -1.290843 Prob. 0.1393 0.1121 0.2140 13246720 35.42455 35.57391 4.972142 0.019946
0.369068 Mean dependent var 12367509 0.294841 S.D. dependent var 11123765 Akaike info criterion 2.10E+15 Schwarz criterion -351.2455 F-statistic 1.196673 Prob(F-statistic)
由表2.4可知,nR2?7.381,该值大于显著性水平为5%,自由度为
2的?分布的临界值?220.05(2)=5.991,因此拒绝同方差的原假设。
1下面采用加权最小对原模型进行回归,即采用~为权重进行加权
ei最小二乘估计,得表2.5(未加权项略)如下:
表2.5
Dependent Variable: Y Sample: 1990 2009 Included observations: 20 Weighting series: 1/Z Variable C X R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
Coefficient -30343.75 0.055674 Std. Error 2120.160 0.001513 t-Statistic -14.31201 36.78759 Prob. 0.0000 0.0000 148089.5 16.04216 16.14173 1353.326 0.000000
0.999979 Mean dependent var 47286.79 0.999977 S.D. dependent var 702.6228 Akaike info criterion 8886217. Schwarz criterion -158.4216 F-statistic 0.781900 Prob(F-statistic)
由表2.5与表1.2对照可清楚的看到,无论是拟合优度,还是参数的显著性,加权后最小二乘估计比加权前都有了改进,并且对加权后的回归模型进行检验,也可验证,模型不再存在异方差(如表2.6所示)。
表2.6
White Heteroskedasticity Test: F-statistic Obs*R-squared
Test Equation:
Dependent Variable: STD_RESID^2 Method: Least Squares Date: 01/02/11 Time: 02:48 Sample: 1990 2009 Included observations: 20
Variable C X X^2 R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
Coefficient 434208.5 0.017321 -6.29E-09 Std. Error 295422.9 0.349544 9.42E-08 t-Statistic 1.469786 0.049553 -0.066783 Prob. 0.1599 0.9611 0.9475 104697.1 26.20313 26.35249 0.009460 0.990590
0.009460 Probability 0.022234 Probability
0.990590 0.988944
0.001112 Mean dependent var 444310.9 -0.116405 S.D. dependent var 110623.1 Akaike info criterion 2.08E+11 Schwarz criterion -259.0313 F-statistic 2.201735 Prob(F-statistic)