(2)已知已知长方体的棱长和,长、宽、高的比是a:b:c。求长、宽、高、体积
长=周长÷4×高=周长÷4×
ab 宽=周长÷4×
a?b?ca?b?cc 体积=长×宽×高
a?b?c(3)已知三角形三个角的比是a:b:c,求三个内角的度数。 三个角分别为: 180×
abc 180× 180×
a?b?ca?b?ca?b?c(4)已知三角形的周长,三条边的长度比是a:b:c,求三条边的长度。 三条边分别为: 周长×
abc 周长× 周长×
a?b?ca?b?ca?b?c12.一个数(0除外)除以一个真分数,所得的商大于它本身。 13.一个数(0除外)除以一个假分数,所得的商小于或等于它本身。 14.一个数(0除外)除以一个带分数,所得的商小于它本身。
已知一个数的几分之几是多少,求这个数,用除法计算; 对应量÷对应分率=单位“1”
四则混合运算
1.分数四则混合运算的顺序与整数四则混合运算的运算顺序相同。在有一级运算和二级运算的计算中,要先算二级运算再算一级运算,即:先乘除后加减。在同级运算中,应按从左到右的顺序依次计算。
2.在分数四则混合运算中,可以应用运算定律使计算简便。
运算定律包括:加法的交换律、加法的结合律、乘法的交换律、乘法的结合律、乘法的分配律。
6
第五单元 圆
1.圆的定义:平面上的一种曲线图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。 圆心一般用字母O表示。它到圆上任意一点的距离都相等。 3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。 4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。 6.在同一个圆内,所有的半径都相等,所有的直径都相等。 7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。 用字母表示为:d=2r 或r=d 29.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,它是一个无限不循环小数,用字母π表示。在计算时,取π ≈ 3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C= πd或C=2πr
12、圆的面积:圆所占面积的大小叫圆的面积。
13.把圆平均分成若干份,然后把它们剪开,可以拼成一个近似长方形的图形,这个长方形的长相当于圆的周长的一半(C=πr),长方形的宽相当于圆的半径(r),2因此长方形的面积等于圆的面积,所以圆的面积是 πr×r=πr2
2214.圆的面积公式:S=πr2 或者S= π(d) 或者S= π(C÷π÷2) 215.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
7
r2×2:πr2:(2r)2 = 2r2:πr2:4r2 16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。 17.一个环形,外圆的半径是R,内圆的半径是r(其中R=r+环的宽度) 圆环的面积(铺小路的面积)=大圆的面积 - 小圆的面积=πR2-πr2=π(R2-r2)
18.环形的周长=外圆周长+内圆周长
19.半圆的周长等于圆的周长的一半加直径。 半圆的周长公式:C=πd ÷ 2+d 或 C=πr+2r
20.半圆面积=圆的面积÷2 公式为:S=πr2÷ 2
21.在同一个圆里,半径扩大或缩小几倍,直径和周长也扩大或缩小相同的倍数;面积则扩大或缩小对应数平方倍。
例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。
22.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。 例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是22:32=4:9。
23.当一个圆的半径增加a,它的周长就增加2πa;当一个圆的直径增加a,它的周长就增加πa。
24.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积占圆面积的几分之几;所对的弧占圆周长的几分之几。
S小正:S圆:S大正=2:π :4
8
25.周长相等的三角形、平行四边形、长方形、正方形和圆,它们的面积依次增大。
面积相等的三角形、平行四边形、长方形、正方形和圆,它们的周长依次减少。 26.扇形弧长公式:L=πd÷360×n 扇形的面积公式:S= πr2÷360×n (n为扇形的圆心角度数)
27.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的 这条直线叫做对称轴。
28.只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。 只有2条对称轴的图形是:长方形 只有3条对称轴的图形是:等边三角形 只有4条对称轴的图形是:正方形; 只有5条对称轴的图形是:正五边形、五角星; ……
有无数条对称轴的图形是:圆、圆环。 29.直径所在的直线是圆的对称轴。
9
第六单元 百分数
1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
百分数表示两个数之间的比率关系,不表示具体的数量,所以百分数不能带单位。
百分数与分数的区别
(1)意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数还可以表示两数之间的倍数关系.
(2)应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。
(3)书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。
而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义.
(4)百分数不能带单位名称;当分数表示具体数时可带单位名称。
百分数应用
百分数一般有三种情况: ①100%以上,如:增长率、增产率等。 ②100%以下,如:发芽率、成长率等。 ③刚好100%,如:正确率,合格率等。
10