参考答案
例1解:这是最基本的方法: 圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)
例2解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为 r,因为正方形的面积为7平方厘米,所以 =7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米
例3解:最基本的方法之一。用四个 圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。 例4解:同上,正方形面积减去圆面积, 16-π()=16-4π=3.44平方厘米
例5解:这是一个用最常用的方法解最常见的题,为方便起见,
我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形, π()×2-16=8π-16=9.12平方厘米
另外:此题还可以看成是1题中阴影部分的8倍。
例6解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分) π-π()=100.48平方厘米
(注:这和两个圆是否相交、交的情况如何无关) 例7解:正方形面积可用(对角线长×对角线长÷2,求) 正方形面积为:5×5÷2=12.5
所以阴影面积为:π÷4-12.5=7.125平方厘米
(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)
例8解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,
所以阴影部分面积为:π()=3.14平方厘米
例9解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,
所以阴影部分面积为:2×3=6平方厘米
例10解:同上,平移左右两部分至中间部分,则合成一个长方形, 所以阴影部分面积为2×1=2平方厘米 (注: 8、9、10三题是简单割、补或平移)
例11解:这种图形称为环形,可以用两个同心圆的面积差或差的一部分来求。
(π -π)×=×3.14=3.66平方厘米 例12.解:三个部分拼成一个半圆面积. π()÷2=14.13平方厘米
例13解: 连对角线后将\叶形\剪开移到右上面的空白部分,凑成正方形的一半. 所以阴影部分面积为:8×8÷2=32平方厘米 例14解:梯形面积减去圆面积, (4+10)×4-π=28-4π=15.44平方厘米 .
例15.分析: 此题比上面的题有一定难度,这是\叶形\的一个半. 解: 设三角形的直角边长为r,则=12,=6
圆面积为:π÷2=3π。圆内三角形的面积为12÷2=6, 阴影部分面积为:(3π-6)×=5.13平方厘米 例16解:[π+π-π]
=π(116-36)=40π=125.6平方厘米
例17解:上面的阴影部分以AB为轴翻转后,整个阴影部分成为梯形减去直角三角形,或两个小直角三角形AED、BCD面积和。 所以阴影部分面积为:5×5÷2+5×10÷2=37.5平方厘米
例18解:阴影部分的周长为三个扇形弧,拼在一起为一个半圆弧, 所以圆弧周长为:2×3.14×3÷2=9.42厘米
例19解:右半部分上面部分逆时针,下面部分顺时针旋转到左半部分,组成一个矩形。
所以面积为:1×2=2平方厘米
例20解:设小圆半径为r,4=36, r=3,大圆半径为R,=2=18, 将阴影部分通过转动移在一起构成半个圆环, 所以面积为:π(-)÷2=4.5π=14.13平方厘米
例21. 解:把中间部分分成四等分,分别放在上面圆的四个角上,补成一个正方形,边长为2厘米, 所以面积为:2×2=4平方厘米
例22解法一: 将左边上面一块移至右边上面,补上空白,则左边为一三角形,右边一个半圆.
阴影部分为一个三角形和一个半圆面积之和. π()÷2+4×4=8π+16=41.12平方厘米
解法二: 补上两个空白为一个完整的圆.
所以阴影部分面积为一个圆减去一个叶形,叶形面积为:π()÷2-4×4=8π-16
所以阴影部分的面积为:π()-8π+16=41.12平方厘米
例23解:面积为4个圆减去8个叶形,叶形面积为:π-1×1=π-1 所以阴影部分的面积为:4π-8(π-1)=8平方厘米
例24分析:连接角上四个小圆的圆心构成一个正方形,各个小圆被切去个圆, 这四个部分正好合成3个整圆,而正方形中的空白部分合成两个小圆. 解:阴影部分为大正方形面积与一个小圆面积之和. 为:4×4+π=19.1416平方厘米
例25分析:四个空白部分可以拼成一个以2为半径的圆. 所以阴影部分的面积为梯形面积减去圆的面积, 4×(4+7)÷2-π=22-4π=9.44平方厘米
例26解: 将三角形CEB以B为圆心,逆时针转动90度,到三角形ABD位置,阴影部分成为三角形ACB面积减去个小圆面积, 为: 5×5÷2-π÷4=12.25-3.14=9.36平方厘米 例27解: 因为2==4,所以=2
以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积, π-2×2÷4+[π÷4-2]