第二章 简单线性回归模型 2.1
(1) ①首先分析人均寿命与人均GDP 的数量关系,用Eviews 分析: Dependent Variable: Y Method: Least Squares Date: 12/27/14 Time: 21:00 Sample: 1 22
Included observations: 22 Variable Coefficient Std. Error t-Statistic Prob. C 56.64794 1.960820 28.88992 0.0000
X1 0.128360 0.027242 4.711834 0.0001 R-squared 0.526082 Mean dependent var 62.50000 Adjusted R-squared 0.502386 S.D. dependent var 10.08889 S.E. of regression 7.116881 Akaike info criterion 6.849324 Sum squared resid 1013.000 Schwarz criterion 6.948510 Log likelihood -73.34257 Hannan-Quinn criter. 6.872689 F-statistic 22.20138 Durbin-Watson stat 0.629074
Prob(F-statistic) 0.000134 有上可知,关系式为y=56.64794+0.128360x1 ②关于人均寿命与成人识字率的关系,用Eviews 分析如下: Dependent Variable: Y Method: Least Squares Date: 11/26/14 Time: 21:10 Sample: 1 22
Included observations: 22 Variable Coefficient Std. Error t-Statistic Prob. C 38.79424 3.532079 10.98340 0.0000
X2 0.331971 0.046656 7.115308 0.0000 R-squared 0.716825 Mean dependent var 62.50000 Adjusted R-squared 0.702666 S.D. dependent var 10.08889 S.E. of regression 5.501306 Akaike info criterion 6.334356 Sum squared resid 605.2873 Schwarz criterion 6.433542 Log likelihood -67.67792 Hannan-Quinn criter. 6.357721 F-statistic 50.62761 Durbin-Watson stat 1.846406
Prob(F-statistic) 0.000001 由上可知,关系式为y=38.79424+0.331971x2
③关于人均寿命与一岁儿童疫苗接种率的关系,用Eviews 分析如下: Dependent Variable: Y Method: Least Squares Date: 11/26/14 Time: 21:14 Sample: 1 22
Included observations: 22 Variable Coefficient Std. Error t-Statistic Prob. C 31.79956 6.536434 4.864971 0.0001
X3 0.387276 0.080260 4.825285 0.0001 R-squared 0.537929 Mean dependent var 62.50000 Adjusted R-squared 0.514825 S.D. dependent var 10.08889 S.E. of regression 7.027364 Akaike info criterion 6.824009 Sum squared resid 987.6770 Schwarz criterion 6.923194 Log likelihood -73.06409 Hannan-Quinn criter. 6.847374 F-statistic 23.28338 Durbin-Watson stat 0.952555
Prob(F-statistic) 0.000103 由上可知,关系式为y=31.79956+0.387276x3
(2)①关于人均寿命与人均GDP 模型,由上可知,可决系数为0.526082,说明所建模型整体上对样本数据拟合较好。
对于回归系数的t 检验:t (β1)=4.711834>t0.025(20)=2.086,对斜率系数的显著性检验表明,人均GDP 对人均寿命有显著影响。
②关于人均寿命与成人识字率模型,由上可知,可决系数为0.716825,说明所建模型整体上对样本数据拟合较好。
对于回归系数的t 检验:t (β2)=7.115308>t0.025(20)=2.086,对斜率系数的显著性检验表明,成人识字率对人均寿命有显著影响。
③关于人均寿命与一岁儿童疫苗的模型,由上可知,可决系数为0.537929,说明所建模型整体上对样本数据拟合较好。
对于回归系数的t 检验:t (β3)=4.825285>t0.025(20)=2.086,对斜率系数的显著性检验表明,一岁儿童疫苗接种率对人均寿命有显著影响。 2.2 (1)
①对于浙江省预算收入与全省生产总值的模型,用Eviews 分析结果如下: Dependent Variable: Y Method: Least Squares Date: 12/03/14 Time: 17:00
Sample (adjusted): 1 33
Included observations: 33 after adjustments Variable Coefficient Std. Error t-Statistic X 0.176124 0.004072 43.25639 C -154.3063 39.08196 -3.948274
R-squared 0.983702 Mean dependent var Adjusted R-squared 0.983177 S.D. dependent var S.E. of regression 175.2325 Akaike info criterion Sum squared resid 951899.7 Schwarz criterion Log likelihood -216.2751 Hannan-Quinn criter. F-statistic 1871.115 Durbin-Watson stat Prob(F-statistic) 0.000000
Prob. 0.0000 0.0004 902.5148 1351.009 13.22880 13.31949 13.25931 0.100021 ②由上可知,模型的参数:斜率系数0.176124,截距为—154.3063
③关于浙江省财政预算收入与全省生产总值的模型,检验模型的显著性: 1)可决系数为0.983702,说明所建模型整体上对样本数据拟合较好。
2)对于回归系数的t 检验:t (β2)=43.25639>t0.025(31)=2.0395,对斜率系数的显著性检验表明,全省生产总值对财政预算总收入有显著影响。 ④用规范形式写出检验结果如下: Y=0.176124X—154.3063 (0.004072) (39.08196) t= (43.25639) (-3.948274) R2=0.983702 F=1871.115 n=33
⑤经济意义是:全省生产总值每增加1亿元,财政预算总收入增加0.176124亿元。 (2)当x=32000时,
①进行点预测,由上可知Y=0.176124X—154.3063,代入可得: Y= Y=0.176124*32000—154.3063=5481.6617 ②进行区间预测:
∑x2=∑(X i —X )2=δ2x (n—1)= 7608.0212 x (33—1)=1852223.473 (Xf —X) 2=(32000— 6000.441)2=675977068.2
当Xf=32000时,将相关数据代入计算得到:
5481.6617—2.0395x175.2325x√1/33+1852223.473/675977068.2≤ Yf≤5481.6617+2.0395x175.2325x√1/33+1852223.473/675977068.2 即Yf 的置信区间为(5481.6617—64.9649, 5481.6617+64.9649)
(3) 对于浙江省预算收入对数与全省生产总值对数的模型,由Eviews 分析结果如下: Dependent Variable: LNY
Method: Least Squares Date: 12/03/14 Time: 18:00 Sample (adjusted): 1 33
Included observations: 33 after adjustments Variable Coefficient Std. Error t-Statistic Prob. LNX 0.980275 0.034296 28.58268 0.0000 C -1.918289 0.268213 -7.152121 0.0000
R-squared 0.963442 Mean dependent var 5.573120 Adjusted R-squared 0.962263 S.D. dependent var 1.684189 S.E. of regression 0.327172 Akaike info criterion 0.662028 Sum squared resid 3.318281 Schwarz criterion 0.752726 Log likelihood -8.923468 Hannan-Quinn criter. 0.692545 F-statistic 816.9699 Durbin-Watson stat 0.096208 Prob(F-statistic) 0.000000
①模型方程为:lnY=0.980275lnX-1.918289
②由上可知,模型的参数:斜率系数为0.980275,截距为-1.918289 ③关于浙江省财政预算收入与全省生产总值的模型,检验其显著性: 1)可决系数为0.963442,说明所建模型整体上对样本数据拟合较好。
2)对于回归系数的t 检验:t (β2)=28.58268>t0.025(31)=2.0395,对斜率系数的显著性检验表明,全省生产总值对财政预算总收入有显著影响。
④经济意义:全省生产总值每增长1%,财政预算总收入增长0.980275% 2.4
(1)对建筑面积与建造单位成本模型,用Eviews 分析结果如下: Dependent Variable: Y
Method: Least Squares Date: 12/01/14 Time: 12:40 Sample: 1 12
Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X -64.18400 4.809828 -13.34434 0.0000
C 1845.475 19.26446 95.79688 0.0000 R-squared 0.946829 Mean dependent var 1619.333 Adjusted R-squared 0.941512 S.D. dependent var 131.2252 S.E. of regression 31.73600 Akaike info criterion 9.903792 Sum squared resid 10071.74 Schwarz criterion 9.984610 Log likelihood -57.42275 Hannan-Quinn criter. 9.873871 F-statistic 178.0715 Durbin-Watson stat 1.172407
Prob(F-statistic) 0.000000 由上可得:建筑面积与建造成本的回归方程为: Y=1845.475--64.18400X
(2)经济意义:建筑面积每增加1万平方米,建筑单位成本每平方米减少64.18400元。 (3)
①首先进行点预测,由Y=1845.475--64.18400X 得,当x=4.5,y=1556.647 ②再进行区间估计: 由上表可知,
∑x2=∑(X i —X )2=δ2x (n—1)= 1.9894192 x (12—1)=43.5357 (Xf —X) 2=(4.5— 3.523333) 2=0.95387843 当Xf=4.5时,将相关数据代入计算得到:
1556.647—2.228x 31.73600x√1/12+43.5357/0.95387843≤ Yf≤1556.647+2.228x31.73600x√1/12+43.5357/0.95387843 即Yf 的置信区间为(1556.647—478.1231, 1556.647+478.1231) 3.1 (1)
①对百户拥有家用汽车量计量经济模型,用Eviews 分析结果如下: Dependent Variable: Y Method: Least Squares Date: 11/25/14 Time: 12:38