人教版九年级下册数学
二次函数知识点总结 教案
主讲人:霜
李霜
一、教学目标:
(1)了解二次函数的意义,掌握二次函数的图象特征和性质,能确定函数解析式,并能解决简单的实际问题.
(2)通过练习及提问,复习二次函数的基础知识;通过对典型例题的分析,培养学生分析问题、解决问题、综合运用数学知识的能力;继续渗透数学思想.
二、教学重点、难点
教学重点:二次函数的图像,性质和应用
教学难点:运用二次函数知识解决较综合性的数学问题. 三、教学过程
复习巩固
(一)二次函数概念:
1.二次函数的概念:一般地,形如y?ax2?bx?c(a, b,c是常数,a?0)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数a?0,而b,c可以为零.二次函数的定义域是全体实数.
2. 二次函数y?ax2?bx?c的结构特征:
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵ a,b,c是常数,a是二次项系数,b是一次项系数,c是常数项.
(二)二次函数的基本形式
1. 二次函数基本形式:y?ax2的性质: a 的绝对值越大,抛物线的开口越小。
a的符号 开口方向 顶点坐标 对称轴 向上 性质 a?0 ?0,0? ?0,0? y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最小值0. x?0时,y随x的增大而减小;x?0时,y随x的增大而增大;x?0时,y有最大值0. a?0 向下 y轴
2. y?ax2?c的性质: 上加下减。 a的符号 开口方向 顶点坐标 对称轴 向上 性质 a?0 ?0,c? ?0,c? y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最小值c. a?0 向下 y轴 x?0时,y随x的增大而减小;x?0时,y随x的增大而增大;x?0时,y有最大值c.
3. y?a?x?h?的性质:
左加右减。 a的符号 2开口方向 顶点坐标 对称轴 向上 性质 a?0 ?h,0? X=h x?h时,y随x的增大而增大;x?h时,y随x的增大而减小;x?h时,y有最小值0. x?h时,y随x的增大而减小;x?h时,y随x的增大而增大;x?h时,y有最大值0. a?0
向下 ?h,0? X=h 4. y?a?x?h??k的性质:
a的符号 2开口方向 顶点坐标 对称轴 向上 性质 a?0 ?h,k? ?h,k? X=h x?h时,y随x的增大而增大;x?h时,y随x的增大而减小;x?h时,y有最小值k. x?h时,y随x的增大而减小;x?h时,y随x的增大而增大;x?h时,y有最大值k. a?0 向下 X=h
(三)二次函数图象的平移
1. 平移步骤:
k?; ⑴ 将抛物线解析式转化成顶点式y?a?x?h??k,确定其顶点坐标?h,k?处,具体平移方法如下: ⑵ 保持抛物线y?ax2的形状不变,将其顶点平移到?h,向上(k>0)【或向下(k<0)】平移|k|个单位2y=ax2y=ax2+k向右(h>0)【或左(h<0)】平移|k|个单位向右(h>0)【或左(h<0)】平移 |k|个单位向上(k>0)【或下(k<0)】平移|k|个单位向右(h>0)【或左(h<0)】平移|k|个单位y=a(x-h)2向上(k>0)【或下(k<0)】平移|k|个单位y=a(x-h)2+k
2. 平移规律
在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”. 概括成八个字“左加右减,上加下减”. (四)二次函数y?a?x?h??k与y?ax2?bx?c的比较
从解析式上看,y?a?x?h??k与y?ax2?bx?c是两种不同的表达形式,后者通过配方可以得b?4ac?b2b4ac?b2?到前者,即y?a?x???,其中h??,. k?2a?4a2a4a?222(五)二次函数y?ax2?bx?c的性质
?b4ac?b2?b 1. 当a?0时,抛物线开口向上,对称轴为x??,顶点坐标为??,?.
2a4a2a??当x??当x??b时,y随x的增大而减小; 2ab时,y随x的增大而增大; 2a4ac?b2b当x??时,y有最小值.
4a2a?b4ac?b2?bb 2. 当a?0时,抛物线开口向下,对称轴为x??,顶点坐标为??,时,?.当x??4a?2a2a?2a4ac?b2bb. y随x的增大而增大;当x??时,y随x的增大而减小;当x??时,y有最大值
4a2a2a
(六)二次函数解析式的表示方法
1. 一般式:y?ax2?bx?c(a,b,c为常数,a?0); 2. 顶点式:y?a(x?h)2?k(a,h,k为常数,a?0);
3. 两根式(交点式):y?a(x?x1)(x?x2)(a?0,x1,x2是抛物线与x轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,
2只有抛物线与x轴有交点,即b?4ac?0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
(七)二次函数的图象与各项系数之间的关系
1. 二次项系数a
⑴ 当a?0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大; ⑵ 当a?0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大. 2. 一次项系数b
在二次项系数a确定的前提下,b决定了抛物线的对称轴.(同左异右 b为0对称轴为y轴) 3. 常数项c
⑴ 当c?0时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正; ⑵ 当c?0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0; ⑶ 当c?0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负. 总结起来,c决定了抛物线与y轴交点的位置.
(八)二次函数与一元二次方程:
1. 二次函数与一元二次方程的关系(二次函数与x轴交点情况):
一元二次方程ax2?bx?c?0是二次函数y?ax2?bx?c当函数值y?0时的特殊情况. 图象与x轴的交点个数:
0?,B?x2,0?(x1?x2),其中的x1,x2是一元① 当??b2?4ac?0时,图象与x轴交于两点A?x1,二次方程ax2?bx?c?0?a?0?的两根..
② 当??0时,图象与x轴只有一个交点;
③ 当??0时,图象与x轴没有交点.
1' 当a?0时,图象落在x轴的上方,无论x为任何实数,都有y?0; 2' 当a?0时,图象落在x轴的下方,无论x为任何实数,都有y?0. 2. 抛物线y?ax2?bx?c的图象与y轴一定相交,交点坐标为(0,c);
例题讲解:
15.已知二次函数图象的对称轴是x?3?0,图象经过(1,-6),且与y轴的交点为(0,?(1)求这个二次函数的解析式;
(2)当x为何值时,这个函数的函数值为0?
(3)当x在什么范围内变化时,这个函数的函数值y随x的增大而增大?
17.如图,抛物线y?x?bx?c经过直线y?x?3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线顶点为D. (1)求此抛物线的解析式;
(2)点P为抛物线上的一个动点,求使S?APC:S?ACD?5 :4的点P的坐标。
25). 2第15题图
二次函数对应练习试题
一、选择题