列算式求和,并改变运算顺序:
1+1+1+2+1+3+1+4十1+5+1+6+1+7+1+8+1+9+1+10+1+11+1+12 =(1+2+3+4+5+6+7+8+9+10+11+12)+(1+1+1+1+1+1+1+1+1+1+1+1) =78+12=90(下) 经典例题:
例1、哥哥和妹妹分糖。哥哥拿1块,妹妹拿2块;哥哥拿3块,妹妹拿4块;接着哥哥拿5块、7块、9块、11块、13块、15块,妹妹拿6块、8块、10块、12块、14块、16块。你说谁拿得多,多几块?
解:方法1:先算哥哥共拿了多少块? 再算妹妹共拿了多少块? 72-64=8(块)
方法2:这样想:先算每次妹妹比哥哥多拿几块,再算共多拿了多少块。
(2-1)+(4-3)+(6-5)+(8-7)+(10-9)+(12-11)+(14-13)+(16-15) =1+1+1+1+1+1+1+1=8(块) 可以看出方法2要比方法1巧妙!
例2、星期天,小明家来了9名小客人。小明拿出一包糖,里面有54块。小明说:“咱们一共10个人,每人都要分到糖,但每人分到的糖块数不能一样多,谁会分?”结果大家都无法分,你能帮他们分好吗? 解:按小明提的要求确实无法分。
因为要使得每个人都得到糖,糖块数人人不等,需要糖块数最少的分法是:第一人分到1块,第二人分到2块,…第十人分到10块。但是,这种分法共需要有 1+2+3+4+5+6+7+8+9+10=55(块)
而小明这包糖一共才54块,所以按这种方法无法分。如果改变一下,有一人少得1块糖,比如说,应该得10块糖的小朋友只分到了9块,但是这样一来,他就和另一个先分得9块糖的那个小朋友一样多了,这又不符合小明提出“每人分到的糖块数不能一样多”的要求。