锂离子电池论文:纯电动汽车电池管理系统的研究
【中文摘要】随着全球经济发展以及能源、环保等问题的日益突出,电动汽车以零排放和噪声低等优点已成为节能环保绿色车辆最主要的发展方向之一,并且越来越受到世界各国的重视,在二十世纪得到迅速发展。而电动汽车的动力源——动力锂离子电池,是目前电动汽车发展的瓶颈。作为发展电动车的关键技术之一的电池管理系统(Battery Management System,简称BMS)研究是解决该问题的关键,倍受人们的关注,是电动车产业化的关键。电池管理系统监测及管理电动汽车的动力电池运行的全过程,包括电池基本信息(包括电压、电流、温度和电量)监测、剩余电量估计、单体电池间的充放电均衡、电池故障诊断等方面。本文以昌河爱迪尔汽车改装的电动汽车为试验平台,以锂离子电池为研究对象,研制适用于电动汽车的电池管理系统。是实时监控锂离子电池、延长电池使用寿命、提高电池的能量效率和运行可靠性。首先分析了锂离子电池的工作特性和影响剩余容量的因素,比较了几种估算电池荷电状态(State of Charge,简称SOC)的方法,并介绍了本系统中采用的SOC估算方法,即开路电压法与安时法相结合的方法。其次针对锂离子电池的特性,设计出基于微控制器的电池保护系统。可监测单体电池的电压,防止电池在使用中出现过充、过放等现象;监测电池组的电流和温度信号,防止电池组出现过流、温度过高、短路等减少电池寿命现象的发生。管理系统基于单片机实现对电池组电压、电流和温度的精确采集,采用串口和控制器
局域网络接口完成管理系统与其它系统之间的通信连接。最后,在电动汽车上搭建实验平台,将锂离子电池组与设计的电池管理系统连接进行相关调试、试验,测得相关数据并进行了数据分析。结果表明:本文所设计并实现的电池管理系统硬件电路可靠、经济、抗干扰能力强,可以实现:电池组的电压、电流、温度的模拟量采集;均衡充放电;剩余电量的计算和电池状态的判断;实时显示电池组相关信息,故障时报警等功能。
【英文摘要】With the global economic development and the energy, environmental protection and other issues become more prominent, Electric Vehicles with zero emissions and low noise advantages of energy saving green vehicles has become the most important development directions, and more and more world attention, the rapid development in the twenty-first century. But the power source for electric vehicles-Power lithium-ion battery is the bottleneck of the development of electric vehicles. As the development of electric vehicles as one of the key technologies of the battery management system (BMS) is the key to solve the problem, more attention is the key to the industrialization of electric vehicles.Battery management system monitors and management of electric vehicle battery power to run the entire process, including the battery of basic information (including voltage, current, temperature and power)
monitoring, estimated the remaining capacity, charge and discharge balance between single batteries, battery fault diagnosis and so on.In this paper, Chang He Ideal car modified for the test platform for electric vehicles, lithium-ion battery for the study, developed the battery management system for electric vehicle. Purpose of real-time monitoring of lithium-ion battery, extended the battery’s life, increase energy efficiency and battery reliability.First analyzes the operating characteristics of lithium-ion battery remaining capacity factors and impact, compared the estimated battery state of charge (SOC) of several methods, and introduced the SOC estimation method used in this paper, which is ampere hour method and open circuit voltage combined.Secondly, for the characteristics of lithium-ion battery, designed the battery protection system based on Micro Controller Unit. Could be achieved single cell voltage monitoring to prevent the cells appeared in the use of charge, over discharge and so on; Monitoring the battery current and temperature signals, to prevent battery over current, over temperature, short circuit to reduce the battery life phenomenon. The management system based on Micro Controller Unit to achieve collected the battery voltage, current and accurate temperature, using the serial and
Controller Area Network interface to complete communication links between the management system and other systems.Finally, building the experimental platform on electric vehicle, and connected the lithium-ion batteries and battery management system and associated debugging, testing, measured data and conducted data analysis. The results showed that:The battery management system’s hardware was designed and implemented by paper reliability, economy and anti-interference ability. Can be achieved:Acquisition of the battery pack voltage, current, temperature’analog; balanced charge and discharge; calculate remaining battery time and judge the state of the battery; real-time display battery information and failure alarm functions.
【关键词】锂离子电池 BMS SOC 电动汽车 均衡
【英文关键词】Lithium-ion battery BMS SOC Electric vehicles Balance
【目录】纯电动汽车电池管理系统的研究摘要3-49
ABSTRACT4-5
第一章 绪论9-20
1.1 选题意义1.3 电动汽车电池
1.2 国内外电动汽车及其发展概况9-12
管理系统综述12-181.3.1 电池管理系统(BMS-Battery
1.3.2 电池管理系统结构及功能
1.4 本
Management System)简介12-14分析14-17
1.3.3 电池管理系统国内外研究现状17-18
文的研究内容1819-20
1.5 系统的技术指标18-191.6 本章小结
2.1 锂离
第二章 锂离子电池及其SOC估算方法20-33
2.1.1 锂离子电池简介20-212.1.3 锂离子电池原理22-23
子电池20-25发展历史21-22
2.1.2 锂离子电池2.1.4 锂离子电
池主要特点23-2525-28
2.2 锂离子电池剩余电量及影响因素
2.2.2 影响锂离子电池剩余电量
2.3.1 开路电压法2.3.4 电动势法
2.3.7 2.4
2.2.1 SOC定义25-26
的因素26-2828-2929-30
2.3 常用SOC估算方法28-32
2.3.3 内阻法29
2.3.2 安时法29
2.3.5 负载电压法302.3.6 卡尔曼滤波法302.3.8 线性模型法31-32
神经网络法和模糊推理法30-31本章小结32-33估算33-4133-34
第三章 基于安时-开路电压法的锂离子电池SOC
3.1.1 安时法的缺点
3.2
3.1 安时-开路电压法33-36
3.1.2 安时-开路电压法对安时法的补偿方法34-36
基于补偿方法的SOC曲线方程的建模36-39补偿的建模36
3.2.1 基于开路电压
3.2.3
3.2.2 基于充放电倍率补偿的建模36-37
基于温度补偿的建模37-3838-39
3.2.4 基于充放电循环次数的建模
3.4 本4.1 系统
3.3 安时-开路电压法SOC估算程序实现39-40
第四章 电池管理系统硬件设计41-534.2 主控MCU的选择42-44
4.2.1
章小结40-41总体结构41-42
STC12C5A60S2简介42-44状态信息采集模块44-4945-46
4.2.2 单片机外围电路444.3.1 电压电流采集模块
4.3 电池
4.3.2 温度采集模块46-474.3.3 A/D转换模块