2024年江苏省泰州市中考数学试卷 (考试时间120分钟,满分150分)
请注意:1.本试卷选择题和非选择题两个部分,
2.所有试题的答案均填写在答题卡上,答案写在试卷上无效, 3.作图必须用2B铅笔,并请加黑加粗。
第一部分 选择题(共18分)
一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上) 1.﹣1的相反数是( ) A.±1
B.﹣1
C.0
D.1
2.下列图形中的轴对称图形是( )
3.方程2x2+6x-1=0的两根为x1、x2,则x1+x2等于( )
A.-6 B.6 C.-3 D. 3 4.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如下表( )
抛掷次数 正面朝上的频数 100 53 200 98 300 156 400 202 500 244 若抛掷硬币的次数为1000,则“下面朝上”的频数最接近 A.200
B.300
C.500
D.800
5.B、C、D、E、F、G在小正方形的顶点上,如图所示的网格由边长相同的小正方形组成,点A、则△ABC的重心是( ) A.点D C.点F
D.点G
B B.点E
A F · G · · · E D 第5题图 C 6.若2a-3b=-1,则代数式4a2-6ab+3b的值为( ) A.-1
B.1
C.2
D.3
实用文档 精心整理 1
第二部分 非选择题(共132分)
二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.) 7.计算:(π-1)0= . 8.若分式
1有意义,则x的取值范围是 . 2x?19.2024年5月28日,我国“科学”号远洋科考船在最深约为11000m的马里亚纳海沟南侧发现了近10片珊瑚林,将11000用科学记数法表示为 .
?x?110.不等式组?的解集为 .
x??3?11.八边形的内角和为 .
12.命题“三角形的三个内角中至少有两个锐角”是 (填“真命题”或“假命题”).
13.根据某商场2024年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为1000万元,则该商场全年的营业额为 万元.
14.若关于x的方程x2+2x+m=0有两个不相等的实数根,则m的取值范围是 .
一季度 35% 四季度 25% 三季度 20% 第15题图 P B A C
? O 二季度 第13题图
第16题图
15.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为 cm.
16.如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交于⊙O点B、C.设PB=x,PC=y,则y与x的函数表达式为 .
三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)
17.(本题满分12分)(1)计算:(8-
实用文档 精心整理
2x?53x?31)×2 ;()解方程:?3?6x?2x?222
18.(本题满分8分)
PM2.5是指空气中直径小于或等于2.5PM的颗粒物,它对人体健康和大气环境造成不良影响.下表是根据(全国城市空气质量报告)中的部分数据制作的统计表,根据统计表回答下列问题:
2017年、2024年7~12月全国338个地区及以上城市平均浓度统计表:
(单位:pm/m2)
月份 7 年份 2017年 2024年 27 23 24 24 30 25 38 36 51 49 65 53 8 9 10 11 12 (1)2024年7~12月PM2.5平均浓度的中位数为 pm/m2; (2)“扇形统计图”和“折线统计图”中,更能直观地反映2024年7~12月PM2.5平均浓度变化过程和趋势的统计图是 ;
(3)某同学观察统计表后说:“2024年7~12月与2017年同期相比,空气质量有所改善”。请你用一句话说明该同学得出这个结论的理由。
19.(本题满分8分)
小明代表学校参加“我和我的祖国”主题宣传教育活动,该活动分为两个阶段,第一阶段有“歌曲演唱”、“ 书法展示”、“器乐独奏”3个项目(依次用A、B、C表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D、E表示),参加人员在每个阶段各随机抽取一个项目完成.用画树状图或列表的方法列出小明参加项目的所有等可能的结果,并求小明恰好抽中B、D两个项目的概率.
20.(本题满分8分)如图, △ABC中,∠C=900, AC=4, BC=8, (1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法) (2)若(1)中所作的垂直平分线交BC于点D,求BD的长.
实用文档 精心整理
A C 第20题图 3 B 21.(本题满分10分)某体育看台侧面的示意图如图所示,观众区AC的坡度i=1∶2,顶端C离水平地面AB的高度为10m,从顶棚的D处看E处的仰角α=18030′,竖直的立杆上C、D两点间的距离为4m,E处到观众区底端A处的水平距离AF为3m,求: (1)观众区的水平宽度AB; (2)顶棚的E处离地面的高度EF.
(sin18030′≈0.32, tan18030′≈0.33,结果精确到0.1m)
22.(本题满分10分)
如图,在平面直角坐标系xoy 中,二次函数图像的顶点坐标为(4,-3),该图像与x轴相交于点A、B,与y轴相交于点C,其中点A 的横坐标为1. (1)求该二次函数的表达式; (2)求tan∠ABC.
23.(本题满分10分)
小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于
100kg,超过300kg时,所有这种水果的批发单价均为3元/kg.图中折线表示批发单价y(元/kg)与质量x(kg)的函数关系.
(1)求图中线段AB所在直线的函数表达式;
(2)小李用800元一次可以批发这种水果的质量是多少?
24.(本题满分10分)
实用文档 精心整理
E G
α D C
F A
第21题图
B
y C O x A 第22题图 B y(元/kg) 5 3 A B 100 300 X(kg)
第23题图
4
如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为弧AC的中点,过点D作DE∥AC,交BC的延长线于点E.
(1)判断DE与⊙O的位置关系,并说明理由; (2)若⊙O的半径为5,AB=8,求CE的长.
25.(本题满分12分)
如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD ,且点C、D与点B在AP 两侧,在线段DP上取一点E,使∠EAP=∠BAP.直线CE与线段AB相交于点F(点F与点A、B不重合).
(1)求证:△AEP≌△CEP;
(2)判断CF与AB的位置关系,并说明理由; (3)求△AEF的周长.
26.(本题满分14分)
实用文档 精心整理
A D O B C E C G D E P A F 第25题图 B 5