好文档 - 专业文书写作范文服务资料分享网站

高中必修一基本初等函数的练习题及答案(推荐文档)

天下 分享 时间: 加入收藏 我要投稿 点赞

2007年高一数学章节测试题

第二章 基本初等函数

时量 120分钟 总分 150分

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1. 下列计算中正确的是 A.x?x?x B.(3ab)?9ab C. lg(a+b)=lga·lgb D.lne=1

?122. 已知a??7,则a?a2?

aA. 3 B. 9 C. –3 D. ?3

11336232493.下列函数中,在其定义域内既是奇函数又是减函数的是

3xA. y??x B. y?log1x C. y?x D. y?()

2124. 世界人口已超过56亿,若年增长率按千分之一计算,则两年增长的人口就可相当于一个

A.新加坡(270万)B.香港(560万)C.瑞士(700万) D.上海(1200万) 5. 把函数y=ax (0

(A) (B) (C) (D)

A. B. C. D.

6. 若a、b是任意实数,且a?b,则 A.a?b B.222a?b?1??1??0 C.lg(a?b)?0 D.?????

?2??2?ab7.(山东)设????1,1,值为

A.1,3

??1?,3?,则使函数y?x?的定义域为R且为奇函数的所有?2?

C.?1,3 D.?1,1,3

B.?1,1

8.(全国Ⅰ) 设a?1,函数f(x)?logax在区间?a,2a?上的最大值与最小值之差为则a?

C.22

119. 已知f(x)=|lgx|,则f()、f()、f(2) 大小关系为

43

B.2

1

1, 2A.2 D.4

1111A. f(2)> f()>f() B. f()>f()>f(2)

44331111C. f(2)> f()>f() D. f()>f()>f(2)

443310.(湖南) 函数f(x)??个数是

A.4

?4x?4, x≤1,?x?4x?3,x?12的图象和函数g(x)?log2x的图象的交点

B.3 C.2 D.1

二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上. 11.(上海) 函数y?lg(4?x)的定义域是 .

x?312. 当x?[-1, 1]时,函数f(x)=3x-2的值域为 .

13. (全国Ⅰ)函数y?f(x)的图象与函数y?log3x(x?0)的图象关于直线y?x对称,则f(x)? . 14.(湖南) 若a?0,a?234,则log2a? . 93215. (四川) 若函数f(x)?e?(x??)(e是自然对数的底数)的最大值是m,且f(x)是

偶函数,则m???________.

三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16. (本小题满分12分)

(1)指数函数y=f(x)的图象过点(2,4),求f(4)的值;

2m+n

(2)已知loga2=m,loga3=n,求a.

17. (本小题满分12分) 求下列各式的值 (1) ?0.064?

?13?7?5???????2??8?0???25?1?????16?0.75

2

(2)

14lg32?lg8?lg5 23

18. (本小题满分12分) 牛奶保鲜时间因储藏时温度的不同而不同,假定保鲜时间与储藏温度之间的函数关系是一种指数型函数,若牛奶放在0oC的冰箱中,保鲜时间是.....200h,而在1oC的温度下则是160h.

(1) 写出保鲜时间y关于储藏温度x的函数解析式; (2) 利用(1)的结论,指出温度在2oC和3oC的保鲜时间.

19. (本小题满分12分) 某种放射性物质不断变化为其它物质,每经过一年,剩留的该物质是原来的

4,若该放射性物质原有的质量为a克,经过x年后剩留的该物质的564? 125质量为y克.

(1) 写出y随x变化的函数关系式;

(2) 经过多少年后,该物质剩留的质量是原来的

a?2x?a?220. (本小题满分13分) 已知f(x)= (x?R) ,若对x?R,都有f(-x)=-f(x)

2x?1成立

(1) 求实数a 的值,并求f(1)的值;

3

(2)判断函数的单调性,并证明你的结论; (3) 解不等式 f(2x?1)?

1. 3第二章 基本初等函数参考答案

一、选择题

D A A D A D A D B B 二、填空题

11. xx?4且x?3??5x12. [-,1] 13. f(x)?3(x?R)

314 . 3 15. m???1. 三、解答题

2m+n

16. 解:(1)f(4)=16 …………6分 (2)a =12 …………12分

17. 解:(用计算器计算没有过程,只记2分)

4

15. …………6分 8143111(2) 原式??5lg2??lg2?lg5?(lg2?lg5)?.…………12分

2322224x18. (1)保鲜时间y关于储藏温度x的函数解析式y?200() ………6分

5(1) 原式=0.4?1-1???2?+2?3=

?2 (2)温度在2oC和3oC的保鲜时间分别为128和102.4小时. ………11分 答 略 ………………12分

?4?19. 解:(1)y????a?5?xx(x?N*) …………6分

64?4?(2)依题意得 ??a?a,解x=3. …………11分

5125??答略. ………………12分 20. 解:(1) 由对x?R,都有f(-x)=-f(x)成立 得, a=1,f(1)?1.……4分 3 (2) f(x)在定义域R上为增函数. ………………6分

2x?1(x?R) 证明如下:由得f(x)?x2?1任取???x1?x2???,

2(2x1?2x2)2x1?12x2?1??∵ f(x1)?f(x2)?x ………………8分

21?12x2?12x1?12x2?1????∵ ???x1?x2???,∴ 21?22 ∴ f(x1)?f(x2)?0,即f(x1)?f(x2)

∴ f(x)在定义域R上为增函数.(未用定义证明适当扣分) ………………10分 (3) 由(1),(2)可知,不等式可化为f(2x?1)?f(1)?2x?1?1

得原不等式的解为 x?1 (其它解法也可) ………………13分

xx 5

高中必修一基本初等函数的练习题及答案(推荐文档)

2007年高一数学章节测试题第二章基本初等函数时量120分钟总分150分一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列计算中正确的是A.x?x
推荐度:
点击下载文档文档为doc格式
0snky2gars85bn78arf2570pk9t7uz00b52
领取福利

微信扫码领取福利

微信扫码分享