Fenton试剂在有机废水处理中的研究工学论文
Fenton试剂在有机废水处理中的研究工学论文
4年,化学家Fenton首次发现有机物在(H2O2)与Fe2+组成的混合溶液中能被迅速氧化,并把这种体系称为标准Fenton试剂,可以将当时很多的有机化合物如羧酸、醇、酯类氧化为无机态,氧化效果十清楚显[1]。Fenton试剂是由H2O2和Fe2+混合得到的一种强氧化剂,特别适用于某些难治理的或对生物有毒性的工业废水的处理。
Fenton试剂之所以具有非常高的氧化能力,是因为在Fe2+离子的催化作用下H2O2的分解活化能低(34.9kJ/mol),能够分解产生羟基自基OH·。同其它一些氧化剂相比,羟基自由基具有更高的氧化电极电位,因而具有很强的氧化性能[2]。
Fenton试剂处理难降解有机废水的影响因素根据上述Fenton试剂反响的机理可知,OH·是氧化有机物的有效因子,而[Fe2+]、[H2O2]、[OH]决定了OH·的产量,因而决定了与有机物反响的程度。影响Fenton试剂处理难降解难氧化有机废水的因素包括pH值、H2O2投加量、催化剂投加量和反响温度[3]等。
Fenton试剂是在pH是酸性条件下发生作用的,在中性和碱性环境中,Fe2+不能催化H2O2产生OH·。按照经典的Fenton试剂反响理论,pH
值升高不仅抑制了OH·的产生,而且使溶液中的Fe2+以氢氧化物的形式沉淀而失去催化能力。当pH值过低时,溶液中的H+浓度过高,Fe3+不能顺利地被复原为Fe2+,催化反响受阻。即pH值的变化直接影响到Fe2+、Fe3+的络合平衡体系,从而影响Fenton试剂的氧化能力。一般废水pH在3左右,降解率较高。
采用Fenton试剂处理废水的有效性和经济性主要取决于H2O2的投加量。一般地,随着H2O2用量的增加,有机物降解率先增大,而后出现下降。
FeSO4·7H2O是催化H2O2分解生成羟基自由基(OH·)最常用的催化剂。与H2O2相同,一般情况下,随着Fe2+用量的增加,废水COD的去除率先增大,而后呈下降趋势。其原因是:在Fe2+浓度较低时,Fe2+的浓度增加,单位量H2O2产生的OH·增加,所产生的OH·全部参与了与有机物的反响;当Fe2+的浓度过高时,局部H2O2发生无效分解,释放出O2。
对于一般的化学反响,随着反响温度的升高,反响物分子平均动能增大,反响速率加快。对于Fenton反响系统,温度升高,OH·的活性增大,有利于OH·与废水中有机物的反响,可提高废水COD的去除率;当温度过高时,会促使H2O2分解为O2和H2O,不利于OH·的生成,反而会降低废水COD的去除率。
为进一步提高对有机物的去除效果,以标准Fenton试剂为根底,通过改变和耦合反响条件,改善反响机制,得到了一系列机理相似的类Fenton试剂,如光-Fenton试剂、电-Fenton试剂和混凝-Fenton试剂等。
当有光辐射(如紫外光、可见光)时,Fenton试剂氧化性能有很大的改善。UVFenton法也叫光助Fenton法,是普通Fenton法与UVH2O2两种系统的复合,与该两种系统相比,其优点在于降低了Fe2+用量,提高了H2O2的利用率。这是由于Fe3+和紫外线对H2O2的催化分解存在协同效应。该法存在的主要问题是太阳能利用率仍然不高,能耗较大,处理设备费用较高。 3.1.2UV-vis草酸铁络合物H2O2法
当有机物浓度高时,被Fe3+络合物所吸收的光量子数很少,且需较长的辐照时间,H2O2的投加量也随之增加,OH·易被高浓度的H2O2所去除。因而,UVFenton法一般只适宜于处理中低浓度的有机废水[4]。当在UVFenton体系中引入光化学活性较高的物质(如含Fe3+的草酸盐和柠檬酸盐络合物)时,可有效提高对紫外线和可见光的利用效果。
光Fenton法比普通Fenton法提高了对有机物的矿化程度[5],但仍存在光量子效率低和自动产生H2O2机制不完善的缺点。电Fenton法利用电化学法产生的H2O2和Fe2+作为Fenton试剂的`持续,与光