①当a?0时,因为x?0,所以ax?2x?a?0,所以f??x??0,
2所以f?x?的单调递减区间为?0,???.
2②当a?0时,令f??x??0,得ax?2x?a?0,
当a?1时,??4?4a?0,f??x??0,
2所以f?x?的单调递增区间为?0,???, 当0?a?1时,??4?4a?0,
21?1?a21?1?a2由ax?2x?a?0得x1?,x2?. aa2因为0?a?1,所以x2?x1?0,
?1?1?a2所以,当x??0,?a???1?1?a2?,???时,f??x??0; ?或x?????a?????时,f??x??0, ????1?1?a2?,???和??,
???a?????. ???1?1?a21?1?a2,当x???aa??1?1?a2所以f?x?的单调递增区间为?0,?a??1?1?a21?1?a2,f?x?的单调递减区间为??aa?综上,当a?0时,f?x?的单调递减区间为?0,???; 当a?1时,f?x?的单调递增区间为?0,???;
?1?1?a2当0?a?1时,f?x?的单调递增区间为?0,?a??1?1?a21?1?a2,f?x?的单调递减区间为??aa?(2)因为a???1?1?a2?,???; ?和????a?????. ??1?1?1,所以f?x???x???2lnx.
2?x?2由(1)知,f?x?的单调递增区间为0,2?3,2?3,??,
????f?x?的单调递减区间为2?3,2?3.
又f?1??0,1?2?3,2?3, 所以f?x?在2?3,2?3有唯一零点, 且f2????????3??0,f?2?3??0,
?31e3e31??31??3?0, 因为0?e?2?3,f?e???e??3??2lne?3??6?7?2?e?2e22?3所以f?x?在0,2?3有唯一零点.
又fe3??fe?3?0,e?2?3,所以f?x?在2?3,??有唯一零点.
3????????综上,当a?1时,f?x?恰有三个零点. 222.解:(1)依题意,直线l1的极坐标方程为??????R?, 由??x?1?cos?,22消去?,得?x?1???y?1??1,
?y?1?sin?将x??cos?,y??sin?,代入上式, 得??2?cos??2?sin??1?0,
故M的极坐标方程为??2?cos??2?sin??1?0.
(2)依题意可设A??1,??,B??2,??,C??3,??且?1,?2,?3,?4均为正数,
将???代入??2?cos??2?sin??1?0, 得??2?cos??sin????1?0,
2222????6??,D??4,???????, 6?所以?1??2?2?cos??sin??, 同理可得,?3??4?2?cos??????????????sin??????, 6?6???所以点O到A,B,C,D四点的距离之和为
?????????1??2??3??4?2?cos??sin???2?cos?????sin?????
66???????1?3sin??3?3cos?
????????21?3sin????.
3????因为???0,????6??,
所以当sin?????????1,即??时,?1??2??3??4取得最大值2?23, 3?6?所以点O到A,B,C,D四点距离之和的最大值为2?23. 23.解:(1)由g?x?3???3,得ax?3??2, 因为不等式g?x?3???3的解集为?2,4?, 所以a?0,故不等式可化为x?3??解得3?2, a22?x?3?, aa?23??2,??a所以?解得a??2.
2?3??4,??a(2)①当x?0时,x?2?ax?1恒成立,所以a?R. ②当x?0时,x?2?ax?1可化为a?x?2?1, x设h?x??x?2?1?x?0?, x?3??x?1,x?0,??3则h?x????1,0?x?2,
?x?1??x?1,x?2.?所以当x?2时,h?x?min?11,所以a?. 22?综上,a的取值围是???,?. 2
??1?