好文档 - 专业文书写作范文服务资料分享网站

2024年福建省高三毕业班质量检查文数试题(精校word版)

天下 分享 时间: 加入收藏 我要投稿 点赞

①当a?0时,因为x?0,所以ax?2x?a?0,所以f??x??0,

2所以f?x?的单调递减区间为?0,???.

2②当a?0时,令f??x??0,得ax?2x?a?0,

当a?1时,??4?4a?0,f??x??0,

2所以f?x?的单调递增区间为?0,???, 当0?a?1时,??4?4a?0,

21?1?a21?1?a2由ax?2x?a?0得x1?,x2?. aa2因为0?a?1,所以x2?x1?0,

?1?1?a2所以,当x??0,?a???1?1?a2?,???时,f??x??0; ?或x?????a?????时,f??x??0, ????1?1?a2?,???和??,

???a?????. ???1?1?a21?1?a2,当x???aa??1?1?a2所以f?x?的单调递增区间为?0,?a??1?1?a21?1?a2,f?x?的单调递减区间为??aa?综上,当a?0时,f?x?的单调递减区间为?0,???; 当a?1时,f?x?的单调递增区间为?0,???;

?1?1?a2当0?a?1时,f?x?的单调递增区间为?0,?a??1?1?a21?1?a2,f?x?的单调递减区间为??aa?(2)因为a???1?1?a2?,???; ?和????a?????. ??1?1?1,所以f?x???x???2lnx.

2?x?2由(1)知,f?x?的单调递增区间为0,2?3,2?3,??,

????f?x?的单调递减区间为2?3,2?3.

又f?1??0,1?2?3,2?3, 所以f?x?在2?3,2?3有唯一零点, 且f2????????3??0,f?2?3??0,

?31e3e31??31??3?0, 因为0?e?2?3,f?e???e??3??2lne?3??6?7?2?e?2e22?3所以f?x?在0,2?3有唯一零点.

又fe3??fe?3?0,e?2?3,所以f?x?在2?3,??有唯一零点.

3????????综上,当a?1时,f?x?恰有三个零点. 222.解:(1)依题意,直线l1的极坐标方程为??????R?, 由??x?1?cos?,22消去?,得?x?1???y?1??1,

?y?1?sin?将x??cos?,y??sin?,代入上式, 得??2?cos??2?sin??1?0,

故M的极坐标方程为??2?cos??2?sin??1?0.

(2)依题意可设A??1,??,B??2,??,C??3,??且?1,?2,?3,?4均为正数,

将???代入??2?cos??2?sin??1?0, 得??2?cos??sin????1?0,

2222????6??,D??4,???????, 6?所以?1??2?2?cos??sin??, 同理可得,?3??4?2?cos??????????????sin??????, 6?6???所以点O到A,B,C,D四点的距离之和为

?????????1??2??3??4?2?cos??sin???2?cos?????sin?????

66???????1?3sin??3?3cos?

????????21?3sin????.

3????因为???0,????6??,

所以当sin?????????1,即??时,?1??2??3??4取得最大值2?23, 3?6?所以点O到A,B,C,D四点距离之和的最大值为2?23. 23.解:(1)由g?x?3???3,得ax?3??2, 因为不等式g?x?3???3的解集为?2,4?, 所以a?0,故不等式可化为x?3??解得3?2, a22?x?3?, aa?23??2,??a所以?解得a??2.

2?3??4,??a(2)①当x?0时,x?2?ax?1恒成立,所以a?R. ②当x?0时,x?2?ax?1可化为a?x?2?1, x设h?x??x?2?1?x?0?, x?3??x?1,x?0,??3则h?x????1,0?x?2,

?x?1??x?1,x?2.?所以当x?2时,h?x?min?11,所以a?. 22?综上,a的取值围是???,?. 2

??1?

2024年福建省高三毕业班质量检查文数试题(精校word版)

①当a?0时,因为x?0,所以ax?2x?a?0,所以f??x??0,2所以f?x?的单调递减区间为?0,???.2②当a?0时,令f??x??0,得ax?2x?a?0,当a?1时,??4?4a?0,f??x??0,2所以f?x?的单调递增区间为?0,???,当0?a?1时,??4?4a?0,21?1?a21?
推荐度:
点击下载文档文档为doc格式
0s8dc95ait97tl37kuug5o77k30e1i00qpt
领取福利

微信扫码领取福利

微信扫码分享