first-hop router, and then the router will forward those IP packets to your computer by encapsulating them into Ethernet frames.
Problem 32
a) Each flow evenly shares a link’s capacity with other flows traversing that link, then the 80 flows crossing the B to access-router 10 Gbps links (as well as the access router to border router links) will each only receive 10 Gbps / 80 = 125 Mbps
b) In Topology of Figure 5.31, there are four distinct paths between the first and third tier-2 switches, together providing 40 Gbps for the traffic from racks 1-4 to racks 9-12. Similarly, there are four links between second and fourth tier-2 switches, together providing 40 Gbps for the traffic from racks 5-8 to 13-16. Thus the total aggregate bandwidth is 80 Gbps, and the value per flow rate is 1 Gbps.
c) Now 20 flows will need to share each 1 Gbps bandwidth between pairs of TOR switches. So the host-to-host bit rate will be 0.5 Gbps.
Problem 33
a) Both email and video application uses the fourth rack for 0.1 percent of the time.
b) Probability that both applications need fourth rack is 0.001*0.001 = 10-6.
c) Suppose the first three racks are for video, the next rack is a shared rack for both video and email, and the next three racks are for email. Let's assume that the fourth rack has all the data and software needed for both the email and video applications. With the topology of Figure 5.31, both applications will have enough intra-bandwidth as long as both are not simultaneously using the fourth rack. From part b, both are using the fourth rack for no more than .00001 % of time, which is within the .0001% requirement.