锂离子电池材料常用表征技术
在锂离子电池发展的过程当中,我们希望获得大量有用的信息来帮助我们对材料和器件进行数据分析,以得知其各方面的性能。目前,锂离子电池材料和器件常用到的研究方法主要有表征方法和电化学测量。
电化学测试主要分为三个部分:(阻抗,看电池的电阻和极化等。
1)充放电测试,主要看电池充放电性能和倍率
3)EIS交流
等;(2)循环伏安,主要是看电池的充放电可逆性,峰电流,起峰位;(
1、成分表征
(1)电感耦合等离子体(ICP)
用来分析物质的组成元素及各种元素的含量。格更贵,检出限更低,主要用于痕量
/超痕量分析。
用ICP研究LiC0O2和LiFePO4
用ICP测量改变参数
[1]。
ICP-AES可以很好地满足实验室主、
次、痕量元素常规分析的需要;ICP-MS相比ICP-AES是近些年新发展的技术,仪器价
Aurbac等在研究正极材料与电解液的界面问题时,
在电解液中的溶解性。通过改变温度、电解液的锂盐种类等参数,值得注意的是,若元素含量较高(例如高于应采用其他方式。
(2)二次离子质谱(SIMS)
通过发射热电子电离氩气或氧气等离子体轰击样品的表面,品成分的纵向分布
时电解液中的Co和Fe含量的变化,从而找到减小正极材料在电解液中溶解的关键
20%),使用ICP检测时误差会大,此时
探测样品表面溢出的荷
电离子或离子团来表征样品成分。可以对同位素分布进行成像,表征样品成分;探测样
Ota等用TOF—SIMS技术研究了亚硫酸乙烯酯作为添加剂加到标准电解液后,石墨负极和LiC0O2正极表面形成SEI膜的成分[2]。Castle等通过SIMS探测V2O5在嵌锂后电极表面到内部Li的分布来研究Li在V2O5中的扩散过程[3]。
(3)X射线光子能谱(XPS)
由瑞典Uppsala大学物理研究所Kai Siegbahn教授及其小组在20 世纪五六十年代逐步发展完善。X射线光电子能谱不仅能测定表面的组成元素,而且还能给出各元素的化学状态信息,能量分辨率高,具有一定的空间分辨率(目前为微米尺度)、时间分辨率(分钟级)。
用于测定表面的组成元素、给出各元素的化学状态信息。
胡勇胜等用XPS研究了在高电压下VEC在石墨表面生成的SEI的成分,主要还是以C、O、Li为主,联合FTIR发现其中主要成分为烷氧基锂盐
第1页共7页
+
+
[4]。
(4)电子能量损失谱(EELS)
利用入射电子引起材料表面电子激发、电离等非弹性散射损失的能量,通过分析能量损失的位置可以得到元素的成分。
EELS相比EDX对轻元素有更好的分辨效果,能
量分辨率高出1~2个量级,空间分辨能力由于伴随着透射电镜技术,也可以达到
10-10 m的量级,同时可以用于测试薄膜厚度,有一定时间分辨能力。通过对EELS谱进行密度泛函(DFT)的拟合,可以进一步获得准确的元素价态甚至是电子态的信息。
AI.Sharab等在研究氟化铁和碳的纳米复合物电极材料时利用的价态分布[5]。
(5)扫描透射X射线显微术(STXM)基于第三代同步辐射光源以及高功率实验室
X 光源、X射线聚焦技术的新型谱学
STEM—EELS联合
结构分布及铁
技术研究了不同充放电状态时氟化铁和碳的纳米复合物的化学元素分布、
显微技术。采用透射X 射线吸收成像的原理,STXM 能够实现具有几十个纳米的高空间分辨的三维成像,同时能提供一定的化学信息。STXM 能够实现无损伤三维成像,对于了解复杂电极材料、固体电解质材料、隔膜材料、电极以及电池可以提供关键的信息,而且这些技术可以实现原位测试的功能。
Sun等研究碳包覆的Li4Ti5O12与未包覆之前相比,具有更好的倍率性能和循环性能。作者利用STXM—XANES和高分辨的TEM确定了无定型的碳层均一地包覆在颗粒表面,包覆厚度约为
O分布情况,其中C包覆在颗粒表面[6]。(6)X射线吸收近边谱(XANES)
是标定元素及其价态的技术,不同化合物中同一价态的同一元素对特定能量有高的吸收,我们称之为近边吸收谱。在锂电池领域中,如正极材料过渡金属变价问题。
Kobayashi等用XANES研究了LiNi0.80Co0.15Al0.05O2正极材料。XANES检测到颗粒表面含有Li2Co3和其它额外立方相杂质[7]。
(7)X射线荧光光谱分析(XRF)
利用初级X射线光子或其它微观离子激发待测物质中的原子,分为X射线光谱法(波长色散)和射线荧光分析仪相应分为
使之产生荧光(次级
XX射线LTO
5 nm。其中通过STXM作者获得了单个LTO颗粒的C、Ti、
XAS主要用于电荷转移研究,
X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,
X射线能谱法(能量色散)。根据色散方式不同,
X射线荧光能谱仪(能量
X射线荧光光谱仪(波长色散)和
第2页共7页
色散)。XRF被工业界广泛应用于锂离子电池材料主成分及杂质元素分析。检出限可以达到10-9的量级。
对某些元素
2、形貌表征
(1)扫描电镜(SEM)
收集样品表面的二次电子信息,反应样品的表面形貌和粗糙程度,带有的SEM可以进一步分析元素种类、分布以及半定量的分析元素含量。虽然
李文俊等利用密封转移盒转移样品的基础上,[8]。
(2)透射电镜(TEM)
材料的表面和界面的形貌和特性,在关于表面包覆以及阐述表面介绍。TEM也可以配置能谱附件来分析元素的种类、分布等。与察到更小的颗粒,并且高分辨透射电镜可以对晶格进行观察,原位循环过程中的形貌和结构演化进行实时的测量和分析
黄建宇等利用原位样品杆对行了原位表征。随后,他们对
SnO2在离子液体中嵌脱锂过程中的形貌和结构演化进TEM原位电池实验的装置进行了改进,利用在金属
Li上
SEI的文献中多有TEM的功能更加强
EDS配件SEM的分
辨率远小于TEM,但它仍是表征电池材料的颗粒大小和表面形貌的最基本的工具
重新设计了针对金属锂电极的扫描电
镜的样品托架,研究了金属锂电极在Li的嵌入和脱出过程中表面孔洞和枝晶的形成过程
SEM相比TEM能观
大,在TEM电镜腔体中组装原位电池,同时借助于TEM的高分辨特性,对电池材料在
自然生产的氧化锂作为电解质,代替了原先使用的离子液体,提高了实验的稳定性,更好地保护了电镜腔体[9,10]。(3)原子力显微镜(AFM)
纳米级平整表面的观察,在碳材料的表征中使用较多。
3、晶体结构表征
(1)X射线衍射技术(XRD)
通过XRD,可以获得材料的晶体结构、结晶度、应力、结晶取向、超结构等信息,还可以反映块体材料平均晶体结构性质,平均的晶胞结构参数变化,拟合后可以获取原子占位信息
Thurston等首次将原位的XRD技术应用到锂离子电池中。通过利用同步辐射光源的硬X射线探测原位电池装置中的体电极材料,直观的观察到晶格膨胀和收缩、相变、多相形成的结果。
(2)扩展X射线吸收精细谱(EXAFS)
第3页共7页
通过X 射线与样品的电子相互作用,吸收部分特定能量的入射光子,来反映材料局部结构差异与变化的技术,具有一定的能量和时间分辨能力,主要获得晶体结构中径向分布、键长、有序度、配位数等信息;通常需要同步辐射光源的强光源来实现实验
Jung等通过用EXAFS分析研究了嵌SnOx/CuOx的碳纳米负极材料的电化学性质,表明嵌SnOx/CuOx的碳纳米纤维具有一个无序的结构,形成了分布,由此导致电化学性能有所提升
(3)中子衍射(ND)
当锂离子电池材料中有较大的原子存在时,发挥着重要作用。
Arbi等通过中子衍射确定了锂离子电池固态电解质材料(4)核磁共振(NMR)
LATP中的Li占位[13]。
+
EXAFS
SnOx颗粒的特殊
[12]。
X 射线将难以对锂离子占位进行精确的
探测。中子对锂离子电池材料中的锂较敏感,因此中子衍射在锂离子电池材料的研究中
NMR具有高的能量分辨、空间分辨能力,能够探测材料中的化学信息并成像,探测枝晶反应、测定锂离子自扩散系数、对颗粒内部相转变反应进行研究。
Grey等对NMR在锂离子电池正极材料中的研究开展了大量的研究工作。
表明从正
极材料的NMR谱中可以得到丰富的化学信息及局部电荷有序无序等信息,并可以探测顺磁或金属态的材料,还可以探测掺杂带来的电子结构的微弱变化来反映元素化合态信息。另外结合同位素示踪还可以研究电池中的副反应等(5)球差校正扫描透射电镜(STEM)
[14]。
用途:用来观察原子的排布情况、原子级实空间成像,可清晰看到晶格与原子占位;对样品要求高;可以实现原位实验
Oshima等利用环形明场成像的球差校正扫描透射显微镜Li2VO4中Li、V、O在实空间的原子排布[15]。(6)Raman
早期用拉曼光谱研究料石墨化程度的表征分析。
LiC0O2的晶体结构,LiC0O2中有两种拉曼活性模式,Co—O
(ABF-STEM)观察到了
伸缩振动Alg的峰与O—Co—O的弯曲振动Eg的峰[16]。也多用于锂离子电池中碳材
4、官能团的表征
官能团又称官能基、功能团,是决定有机化合物化学性质的原子和原子团。常见官能团有烃基、含卤素取代基、含氧官能基、含氮官能基以及含磷、硫官能团
5 种。
第4页共7页
(1)拉曼光谱(RS)
由印度物理学家拉曼在单色光照射液体苯后散射出的与入射光频率不同谱线的实验中发现的,从拉曼光谱可以得到分子振动和转动的信息。拉曼光谱适用于对称结构极性较小的分子,例如对于全对称振动模式的分子,在激发光子的作用下,会发生分子极化,产生拉曼活性,而且活性很强。
在锂离子电池电极材料表征时,由于拆卸和转移过程难免人为或气氛原因对电极材料造成干扰,因此原位技术与拉曼光谱一起用在了电极材料的表征上。拉曼光谱对于材料结构对称性、配位与氧化态非常敏感,可用于测量过渡金属氧化物。
对于拉曼光谱的灵敏度不够的情况,可以使用一些分子的拉曼光谱信号增强,称之为表面增强拉曼散射(
Au和Ag等金属在样品表面进SERS)。
LiO2,
行处理,由于在这些特殊金属的导体表面或溶胶内靠近样品表面电磁场的增强导致吸附
Peng等利用SERS的手段证实了锂空电池充放电过程中确实存在着中间产物
而在充电过程中LiO2并没有观测到,说明了锂空电池的放电过程是一个两步反应过程,以LiO2作为中间产物,而充电过程是不对称的一步反应,Li2O2的直接分解,由于Li2O2导电性差分解困难,这也是导致充电极化大于放电极化的原因
(2)傅里叶变换红外光谱(FT-IS)
红外光谱使用的波段与拉曼类似,不少拉曼活性较弱的分子可以使用红外光谱进行表征,红外光谱也可作为拉曼光谱的补充,红外光谱也称作分子振动光谱,属于分子吸收光谱。
依照红外光区波长的不同可以将红外光区分为三个区域:指的是波数在4000 cm-1以上的区域,主要测量②中红外区,即基本振动区,波数范围在
-1
[17]。
①近红外区,即泛频区,
O—H、C—H、N—H键的倍频吸收;
400~4000 cm-1,也是研究和应用最多的区
域,主要测量分子振动和伴随振动;③远红外区,即分子振动区,指的是波数在400 cm以下的区域,测量的主要是分子的转动信息。
由于水是极性很强的分子,它的红外吸收非常强烈,因此水溶液不能直接测量红外光谱,通常红外光谱的样品需要研磨制成
KBr的压片。
因此红外光谱仪和傅里叶变化处理
通常红外光谱的数据需要进行傅里叶变换处理,光谱手段的工作较多。
Mozhzhukhina等利用红外光谱对锂空电池电解液常用的溶剂二甲基亚砜的稳定性进行了研究,发现的进攻,而在红外光谱中观测到
DMSO
(O)3.5
2-
器联合使用,称为傅里叶红外光谱(FITR)。在锂离子电池电解液的研究中,使用红外
DMSO在锂空电池中无法稳定主要是由于超氧根离子
SO2的信号存在,这个反应难以避免,即使在低至
V的电位下,DMSO也无法稳定[18]。
第5页共7页