_
21、(本题满分15分) 解:(Ⅰ)?e?2c12?, 2?2?1,a2?b2?c2 2aba?a?2,b?2,c?2
x2y2??1 ……………………( 6分) ?24Y D B O X A
(Ⅲ)设D(x1,y1),B(x2,y2),直线AB、AD的斜率分别为:kAB 、kAD,则
kAD?kAB?=22?b[y1?2y2?22x1?b?22x2?b?2 ???x1?1x2?1x1?1x2?1x1?x2?2] ------*
x1x2?(x1?x2)?1 将(Ⅱ)中①、②式代入*式整理得
22?b[x1?x2?2]=0, ……………………( 8分)
x1x2?(x1?x2)?1即kAD?kAB?0
(3)设直线BD的方程为y?2x?b
?y?2x?b22?4x?22bx?b?4?0 ??22?2x?y?42 ????8b?64?0 ??22?b?22
b2?42b, ----① x1x2? x1?x2??-----②…………………… (10分) 24 _
?64?8b26?BD?1?(2)x1?x2?3?3?8?b2,
4422设d为点A到直线BD:y?2x?b的距离, ?d?b3……………………( 12分)
?S?ABD?12BDd?(8?b2)b2?2 ,当且仅当b??2时取等号. 24因为?2?(?22,22),所以当b??2时,?ABD的面积最大,最大值为2 ---(15分)
22、(本题满分15分)
2an解:证明:(1)由于an?1?an???0,则an?1?an.
n?n?1?若an?1?an,则an?0,与a1?1矛盾,从而an?1?an, 2a1?又
1?a2?a3?2?an,
an?1an1?1??1??0, an?1与an同号, ann?n?1?2n?n?1?1?0,则an?1?0,即0?an?1?an……………………(4分) 2又a1?(2)由于0?an?1?an,则an?1?an?anaa?an?nn?1.
n?n?1?n?n?1?即
111111111?????, ???,……………….(16分) anan?1n?n?1?n?1nan?1annn?11?11??11?????当n?2时, ?????an?anan?1??an?1an?2??1111????n?1nn?2n?1?1??11?1????? ?a2a1?a11113n?1??3???0……………….(8分) 2a1nn从而an?n 3n?11n,从而an?……………….(10分) 23n?1当n?1时, a1? _
(3)
an?1ana11?11??1??1??1????,……………….(12分) ann?n?1?n?n?1?2?nn?1?a2a3??a1a2?an?11?1?1?n??1? .……………….(15分) ?n??an2?n?1?2叠加: Sn?