量子力学第一性原理:仅需五个物理基本常数 —— 电子质量、电子电量、普郎克常数、光速和玻耳兹曼常数,通过求薛定谔方程得到材料的电子结构,而不依赖于任何经验常数即可以预测微观体系的状态和性质,预测材料的组分、结构、性能之间的关系,进一步设计具有特定性能的新材料
作为评价事物的依据,第一性原理和经验参数是两个极端。第一性原理是某些硬性规定或推演得出的结论,而经验参数则是通过大量实例得出的规律性的数据,这些数据可以来自第一性原理(称为理论统计数据),也可以来自实验(称为实验统计数据)。 如果某些原理或数据来源于第一性原理,但推演过程中加入了一些假设(这些假设当然是很有说服力的),那么这些原理或数据就称为“半经验的”。 量子化学的第一性原理是指多电子体系的Schr?dinger方程,但是光有这个方程是无法解决任何问题的,量子力学能够准确的解决的问题很少很少,绝大多数都是有各种各样的近似,为此计算量子力学提出一个称为“从头计算”的原理作为第一性原理,除了Schr?dinger方程外还允许使用下列参数和原理: (1) 物理常数,包括光速c、Planck常数h、电子电量e、电子质量me以及原子的各种同位素的质量,尽管这些常数也是通过实验获得的。(在国际单位值中,光速是定义值,Planck常数是测量值,在原子单位制中则相反。) (2) 各种数学和物理的近似,最基本的近似是“非相对论近似”(Schr?dinger方程本来就是非相对论的原理)、“绝热近似”(由于原子核质量比电子大得多,而把原子核当成静止的点处理)和“轨道近似”(用一个独立函数来描述一个独立电子的运动)。
量子化学的从头计算方法就是在各种近似上作的研究。如果只考虑一个电子,而把其他电子对它的作用近似的处理成某种形式的势场,这样就可以把多电子问题简化成单电子问题,这种近似称为单电子近似,也称为平均场近似,例如最基本的从头计算方法哈特里-富克(Hartree-Fock)方法,是平均场近似的一种,它把所有讨论的电子视为在离子势场和其他电子的平均势场中的运动。但是哈特里-富克近似程度过大,忽略了电子之间的交换和相关效应,使得计算的精度受到一定的限制,为了解决这一问题,P Hohenberg和 W Kohn于1964年提出密度泛函理论(density functional theory, DFT),这一理论将电子之间的交换相关势表示为密度泛函,然后使薛定谔方程在考虑了电子之间的复杂相互作用后
利用建立在自洽场近似的方法求解,DFT认为:粒子的哈密顿量取决于电子密度的局域值,由此可以得出局域密度近似(local density approximation)方法
由于诸多近似方法的使用,“从头计算”方法并不是真正意义上的第一性原理,但是其近似方法的运用使得量子计算得以实现。从头计算的结果具有相当的可靠程度,某些精确的从头计算产生的误差甚至比实验误差还小。
量子力学第一性原理



