最新整理
专题02方程及其应用
1.(2019?怀化)一元一次方程x–2=0的解是 A.x=2
B.x=–2
C.x=0
D.x=1
2.(2019?南充)关于x的一元一次方程2xa–2+m=4的解为x=1,则a+m的值为 A.9
B.8
C.5
D.4
3.(2019?杭州)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则
A.2x+3(72–x)=30 C.2x+3(30–x)=72
B.3x+2(72–x)=30 D.3x+2(30–x)=72
4.(2019?襄阳)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是 A.5x–45=7x–3 C.
B.5x+45=7x+3 D.
x?45x?3 ?57x?45x?3 ?575.(2019?福建)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是 A.x+2x+4x=34685 C.x+2x+2x=34685
B.x+2x+3x=34685 D.x+
11x+x=34685 246.(2019?天津)方程组??3x?2y?7的解是
?6x?2y?11
B.?A.??x??1 y?5??x?1 y?2?
?x?3C.?
y??1?
?x?2?D.?1
y???27.(2019?重庆)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把
最新整理
其一半的钱给甲,则甲的数为50;而甲把其
2的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?3设甲的钱数为x,乙的钱数为y,则可建立方程组为
1?x?y?50??2A.?
2?x?y?50??3?1x?y?50??2C.?
2?x?y?50??38.(2019?海南)分式方程A.x=1
9.(2019?成都)分式方程A.x=–1
1?x?y?50??2B.?
2?x?y?50?3??1x?y?50??2D.?
2?x?y?50?3?
1=1的解是 x?2B.x=–1
C.x=2
D.x=–2
x?52?=1的解为 x?1xB.x=1
C.x=2
D.x=–2
10.(2019?黑龙江)已知关于x的分式方程
A.m≤3
B.m<3
2x?m=1的解是非正数,则m的取值范围是 x?3C.m>–3
D.m≥–3
11.(2019?广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙
做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是
120150 ?xx?8120150C. ?x?8xA.
120150 ?x?8x120150D. ?xx?8B.
1?x?2?(x?7)?12.(2019?重庆)若数a使关于x的不等式组?3有且仅有三个整数解,且使关于y的分4??6x?2a?5(1?x)式方程A.–3
1?2ya?=–3的解为正数,则所有满足条件的整数a的值之和是 y?11?yB.–2
C.–1
D.1
13.(2019?河南)一元二次方程(x+1)(x–1)=2x+3的根的情况是
A.有两个不相等的实数根 C.只有一个实数根
B.有两个相等的实数根 D.没有实数根
最新整理
14.(2019?黑龙江)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,
每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是 A.4
B.5
C.6
D.7
15.(2019?广西)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种
花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为
A.(30–x)(20–x)=C.30x+2×20x=
3×20×30 41×20×30 41×20×30 43D.(30–2x)(20–x)=×20×30
4B.(30–2x)(20–x)=
16.(2019?河北)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是
x=–1.他核对时发现所抄的c比原方程的c值小2,则原方程的根的情况是 A.不存在实数根
B.有两个不相等的实数根 D.有两个相等的实数根
C.有一个根是x=–1
17.(2019?新疆)若关于x的一元二次方程(k–1)x2+x+1=0有两个实数根,则k的取值范围是
A.k≤
5 4B.k>
5 4C.k<
5且k≠1 4D.k≤
5且k≠1 418.(2019?新疆)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x个队参
赛,根据题意,可列方程为 A.
1x(x–1)=36 2
B.
1x(x+1)=36 2
C.x(x–1)=36 D.x(x+1)=36
19.(2019?广东)已知x1,x2是一元二次方程x2–2x=0的两个实数根,下列结论错误的是
A.x1≠x2 C.x1+x2=2
B.x12–2x1=0 D.x1?x2=2
20.(2019?成都)若m+1与–2互为相反数,则m的值为__________.
21.(2019?重庆)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、
贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比是4:3:5,根据
最新整理
中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的
919种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的.为使川香种1640植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是__________. 22.(2019?甘肃)分式方程
35?的解为__________. x?1x?223.(2019?江西)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程
度.如图,某路口的斑马线路段A–B–C横穿双向行驶车道,其中AB=BC=6米,在绿灯亮时,小明共用11秒通过AC,其中通过BC的速度是通过AB速度的1.2倍,求小明通过AB时的速度.设小明通过AB时的速度是x米/秒,根据题意列方程得:__________.
24.(2019?江西)设x1,x2是一元二次方程x2–x–1=0的两根,则x1+x2+x1x2=__________.
25.(2019?山西)如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条
道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m2,设道路的宽为xm,则根据题意,可列方程为__________.
?x?y?126.(2019?广州)解方程组:?.
x?3y?9?
最新整理
27.(2019?山西)解方程组:?
28.(2019?南京)解方程:
?3x?2y??8,①.
?x?2y?0,②x3?1?2. x?1x?129.(2019?安徽)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公
路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?
30.(2019?甘肃)中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有
个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?