?2z
??(xy,yg(x))x?f12??(xy,yg(x))g(x)??f1??xy,yg(x)??y?f11?x?y??[xy,yg(x)]?x?f22??[xy,yg(x)]g(x)?.?g?(x)?f2??xy,yg(x)??yg?(x)?f12
因为g(x)在x?1可导,且为极值,所以g?(1)?0,则d2z
??(1,1)?f12??(1,1).|x?1?f1?(1,1)?f11dxdyy?1(17)(本题满分10分)【解析】显然x?0为方程一个实根.当x?0时,令f
?x??
x
?k,
arctanxarctanx?x1?x2.2arctanx??x?R,f??x??令g?x??arctanx?
x1?x211?x2?x?2x2x2
g??x?????0,222221?x?1?x??1?x?即x?R,g??x??0.又因为g?0??0,即当x?0时,g?x??0;当x?0时,g?x??0.当x?0时,f'?x??0;当x?0时,f'?x??0.所以当x?0时,f?x?单调递减,当x?0时,f?x?单调递增又由limf?x??lim
x
?k?1?k,x?0x?0arctanxx
limf?x??lim?k???,x??x??arctanx所以当1?k?0时,由零点定理可知f?x?在(??,0),(0,??)内各有一个零点;当1?k?0时,则f?x?在(??,0),(0,??)内均无零点.综上所述,当k?1时,原方程有三个根.当k?1时,原方程有一个根.(18)(本题满分10分)【解析】(Ⅰ)设f?x??ln?1?x?,x??0,?
n显然f(x)在?0,?上满足拉格朗日的条件,n?1???
?1?
??
11?1??1??1??1?f???f?0??ln?1???ln1?ln?1????,???0,??n??n??n?1??n?n?
所以???0,
??
1??时,n?
111111111
???,?????,即:1n1??n1?0nn?11??nn1?n1
亦即:1?1?1?ln?1???.n?1?n?n结论得证.n
1111
(II)设an?1??????lnn???lnn.23nk?1k先证数列?an?单调递减.11?n?11??n1??n??1
an?1?an????ln?n?1??????lnn???ln???ln??1?
kkn?1n?1n?1???n?k?1??k?1?
利用(I)的结论可以得到数列?an?单调递减.再证数列?an?有下界.n
1?1?
an???lnn??ln?1???lnn,?k?k?1kk?1
n
n
?1??k?1??234n?1?ln1??ln?ln????????????ln?n?1?,kk123n?????k?1k?1?n
n1?1?
an???lnn??ln?1???lnn?ln?n?1??lnn?0.?k?k?1kk?1
n
?
?,?
111?1?
?ln?1???0得到an?1?an,即?ln(1?),所以n?1n?1n?n?
得到数列?an?有下界.利用单调递减数列且有下界得到?an?收敛.(19)(本题满分11分)【解析】I?
1111?
01
''xdx?yfxy(x,y)dy??xdx?ydfx'(x,y)
0001
1????xdxyfx?x,y?|0??fx'?x,y?dy?
??00??
??xdxfx'(x,1)??fx'(x,y)dy.0
0
1
?1
?因为f(x,1)?0,所以fx'(x,1)?0.I???xdx?fx'(x,y)dy???dy?xfx'(x,y)dx
0000111
1??????dyxf(x,y)|0??f(x,y)dx???dyf(1,y)??f(x,y)dx?
????0000????
1
1111???fdxdy?a.D(20)(本题满分11分)【解析】(I)由于?1,?2,?3不能由?1,?2,?3线性表示,对(?1,?2,?3,?1,?2,?3)进行初等行变换:?113101???
(?1,?2,?3,?1,?2,?3)??124013?
?13a115???
3101?3101??11?11??????011?112???011?112?.?02a?3014??00a?52?10?????
当a?5时,r(?1,?2,?3)?2?r(?1,?2,?3,?1)?3,此时,?1不能由?1,?2,?3线性表示,故?1,?2,?3不能由?1,?2,?3线性表示.(II)对(?1,?2,?3,?1,?2,?3)进行初等行变换:?101113???
(?1,?2,?3,?1,?2,?3)??013124?
?115135???
?101113??101113???????013124???013124??014022??001?10?2?????
?100215?????0104210?,?001?10?2???
故?1?2?1?4?2??3,?2??1?2?2,?3?5?1?10?2?2?3.(21)(本题满分11分)?11???11?
TT????
【解析】(I)由于A00?00,设?1??1,0,?1?,?2??1,0,1?,则??????11??11?????
A??1,?2?????1,?2?,即A?1???1,A?2??2,而?1?0,?2?0,知A的特征值为?1??1,?2?1,对应的特征向量分别为k1?1?k1?0?,k2?2?k2?0?.由于r?A??2,故A?0,所以?3?0.由于A是三阶实对称矩阵,故不同特征值对应的特征向量相互正交,设?3?0对应的特征向量为?3??x1,x2,x3?,则T
??1T?3?0,?x1?x3?0,
即??T??2?3?0,?x1?x3?0.
解此方程组,得?3??0,1,0?,故?3?0对应的特征向量为k3?3?k3?0?.T
(II)由于不同特征值对应的特征向量已经正交,只需单位化:?1?
??1?11TTT
??1,0,?1?,?2?2??1,0,1?,?3?3??0,1,0?.?1?2?322??1?
??T
1令Q???1,?2,?3?,则QAQ?????,?0???
A?Q?QT?2??2??0?
??2??222022?
??0?
?1???????1??1?????0?????0?
????
22?0??22?22?0?22?010?
???
?2???2??0??2??2(22)(本题满分11分)22022???0????0????0???????
22220
0?01
2??2?2???2?0????
?001???000??.?100???
【解析】(I)因为PX2?Y2?1,所以PX
???2
?Y2??1?P?X2?Y2??0.即P?X?0,Y??1??P?X?0,Y?1??P?X?1,Y?0??0.利用边缘概率和联合概率的关系得到1
P?X?0,Y?0??P?X?0??P?X?0,Y??1??P?X?0,Y?1??;31
P?X?1,Y??1??P?Y??1??P?X?0,Y??1??;31
P?X?1,Y?1??P?Y?1??P?X?0,Y?1??.3即?X,Y?的概率分布为XY01-101/301/30101/3(II)Z的所有可能取值为?1,0,1.1
P?Z?0??1?P?Z?1??P?Z??1??.3Z?XY的概率分布为ZP-11/301/311/31
P?Z??1??P?X?1,Y??1??.31
P?Z?1??P?X?1,Y?1??.3(III)因为?XY?其中Cov?XY?D(X)D(Y)?
E?XY??E?X??E?Y?D(X)D(Y),