2000届小学数学奥林匹克竞赛试题及答案
2000届小学数学奥林匹克竞赛试题及答案
2000小学数学奥林匹克试题预赛(A)卷 1.计算: 12-22+32-42+52-62+…-1002+1012=________。 2.一个两位数等于其个位数字的平方与十位数字之和,这个两位数是________。 3.五个连续自然数,每个数都是合数,这五个连续自然数的和最小是________。 4.有红、白球若干个。若每次拿出一个红球和一个白球,拿到没有红球时,还剩下50个白球;若每次拿走一个红球和3个白球,则拿到没有白球时,红球还剩下50个。那么这堆红球、白球共有________个。 5.一个年轻人今年(2000年)的岁数正好等于出生年份数字之和,那么这位年轻人今年的岁数是________。 6.如右图, ABCD是平行四边形,面积为72平方厘米,E,F分别为AB,BC的中点,则图中阴影部分的面积为_____平方厘米。 7.a是由2000个9组成的2000位整数,b是由2000个8组成的2000位整数,则a×b的各位数字之和为________。 8.四个连续自然数,它们从小到大顺次是3的倍数、5的倍数、7的倍数、9的倍数,这四个连续自然数的和最小是____。 9.某区对用电的收费标准规定如下:每月每户用电不超过10度的部分,按每度0.45
元收费;超过10度而不超过20度的部分,按每度0.80元收费;超过20度的部分,按每度1.50元收费。某月甲用户比乙用户多交电费7.10元,乙用户比丙用户多交3.75元,那么甲、乙、丙三用户共交电费________元(用电都按整度数收费)。 10.一辆小汽车与一辆大卡车在一段9千米长的狭路上相遇,必须倒车,才能继续通行。已知小汽车的速度是大卡车的速度的3倍,两车倒车的速度是各自速度的 ;小汽车需倒车的路程是大卡车需倒车的路程的4倍。如果小汽车的速度是50千米/时,那么要通过这段狭路最少用________小时。 11.某学校五年级共有110人,参加语文、数学、英语三科活动小组,每人至少参加一组。已知参加语文小组的有52人,只参加语文小组的有16人;参加英语小组的有61人,只参加英语小组的有15人;参加数学小组的有63人,只参加数学小组的有21人。那么三组都参加的有________人。 12.有8级台阶,小明从下向上走,若每次只能跨过一级或两级,他走上去可能有________种不同方法。 预赛(B)卷 1. 计算: =________。 2. 2.1到2000之间被3,4,5除余1的数共有________个。 3. 3.已知从1开始连续n个自然数相乘,1×2×3×…×n,乘积的尾部恰有25 个连续的0,那么n的最大值是____ 。 4. 4.若今天是星期六,从今日起102000天后的那一天是星期________。 5. 如右图,在平行四边形ABCD中,AB=16,
AD=10,BE=4,则FC=________。 6.所有适合不等式 的自然数n之和为________。 7.有一钟表,每小时慢2分钟,早上8点时,把表对准了标准时间,当中午钟表走到12点整的时候,标准时间为_____。 8.地震时,地震中心同时向各个方向传播出纵波和横波,纵波的传播速度是3.96千米/秒,横波的传播速度是2.58千米/秒。某次地震,地震检测点用地震仪接受到地震的纵波之后,隔了18.5秒钟,接受到这个地震的横波,那么这次地震的地震中心距离地震检测点________千米(精确到个位)。 9.一块冰,每小时失去其重量的一半,八小时之后其重量为 千克,那么一开始这块冰的重量是________千克。 10.五年级一班有32人参加数学竞赛,有27人参加英语竞赛,有22人参加语文竞赛,其中参加了数学和英语两科的有12人,参加了语文和英语的有14人,参加了数学和语文两科的有10人,那么五年级一班至少有________人。 11.有2000盏亮着的电灯,各有一个拉线开关控制着。现按其顺序编号为1,2,3,…,2000,然后将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,三次拉完之后,亮着的电灯有________盏。 12.有25张纸片,每张纸片的正面用红色铅笔任意写上一个不超过5的自然数,反面用蓝色铅笔任意写上一个也是不超过5的自然数,唯一的限制是:红色数字相同的任何两张纸片上,所写