第5节 学生实验:用单摆测定重力加速度
1.明确实验目的,理解实验原理.(重点) 2.通过实验,探究单摆的周期与摆长及
重力加速度的关系.(重点+难点) 3.学会使用秒表,掌握实验步骤,并能正确进行实验操作.
一、实验目的
1.利用单摆测定当地的重力加速度. 2.巩固和加深对单摆周期公式的理解. 二、实验原理
单摆在偏角很小(如小于5°)时的摆动,可以看成是简谐运动.其固有周期为T=2π 4π2l
由此可得g=2.据此,只要测出摆长l和周期T,即可计算出当地的重力加速度值.
T
三、实验器材
长约1 m的细线、稍重的带孔小铁球1个、带有铁夹的铁架台1个、米尺1把、秒表1块、游标卡尺.
四、实验步骤
1.让线的一端穿过小球的小孔,然后打一个线结,做成单摆,如图所示.
l,g
2.把线的上端用铁夹固定在铁架台上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,在单摆平衡位置处做上标记.
3.用米尺量出摆线长度l′,精确到毫米,用游标卡尺测出摆球的直径d,即得出小球半dd径为,计算出摆长l=l′+.
22
4.把单摆从平衡位置处拉开一个很小的角度(如小于5°),然后放开小球,让小球摆动,从摆球通过平衡位置时开始计时,数出以后摆球通过平衡位置的次数n,用秒表记下所用的时2t间t,则单摆振动的周期T=.
n
5.根据单摆振动周期公式T=2π
l4π2l,计算出当地重力加速度:g=2. gT
6.改变摆长,重做几次实验,计算出每次实验测出的重力加速度值,求出它们的平均值,即为当地的重力加速度值.
7.将测得的重力加速度值与当地重力加速度值相比较,分析产生误差的可能原因,若误差很大,应重新做实验.
8.整理器材.
对实验操作及误差分析的考查
1.误差分析
(1)系统误差:主要来源于单摆模型本身是否符合要求,即悬点是否固定,球、线是否符合要求,振动是圆锥摆还是在同一竖直平面内振动以及测量哪段长度作为摆长等等.
(2)偶然误差:主要来自时间(即单摆周期)的测量上.摆球通过平衡位置开始计时,不能多记或漏记振动次数.为了减小偶然误差,应进行多次测量取平均值.
(3)本实验中长度(摆线长、摆球的直径)的测量时,读数读到毫米位即可(即使用卡尺测摆球直径也只需保留到毫米位).时间的测量中,秒表读数的有效数字的末位在“秒”的十分位即可.
2.注意事项
(1)构成单摆的条件:摆线应选择细且不易伸长的线,摆球应选择体积小、密度大的小球,且摆角不能超过10°.
(2)固定悬点:单摆悬线的上端不可随意卷在铁夹的杆上,应夹紧在铁夹中,以免摆动时发生摆线下滑,摆长改变的现象.
(3)摆动方法:要使摆球在同一竖直面内摆动,不能形成圆锥摆,方法是将摆球拉到一定位置后由静止释放.
(4)测摆长:摆长应是悬点到球心的距离,等于摆线长加上小球半径.
(5)测周期:要从摆球经过平衡位置时开始计时,且要测多次全振动的时间来计算周期,如在摆球过平衡位置时,开始计时并数零,以后摆球每过一次平衡位置记一个数,最后总计t2t时为t,记数为n,则周期T==.
nn2
圆锥摆是在悬线下方做一个完整的圆周运动,而单摆是在同一竖直面来回做
小范围的左右摆动.
根据单摆周期公式可以通过实验测量当地的重力加速度.如图所示,将细线的上
端固定在铁架台上,下端系一小钢球,就做成了单摆.
(1)记录时间应从摆球经过______开始计时.
(2)以下是实验过程中的一些做法,其中正确的有________. A.摆线要选择细些的、伸缩性小些的,并且尽量长一些 B.摆球尽量选择质量大些、体积小些的
C.为了使摆的周期大一些,以方便测量,开始时拉开摆球,使摆线相距平衡位置有较大的角度
D.拉开摆球,使摆线偏离平衡位置不大于5°,在释放摆球的同时开始计时,当摆球回到开始位置时停止计时,此时间间隔Δt即为单摆周期T
(3)如果某同学测得的g值偏小,可能的原因是________. A.误将摆线长当作摆长 B.测摆线线长时将摆线拉得过紧 C.摆动过程中悬挂点松动了
D.实验中误将49次全振动计为50次
[解析] (1)单摆摆球经过平衡位置的速度最大,最大位移处速度为0,在平衡位置计时误差最小.
(2)摆线要选择细些的(减小阻力)伸缩性小些的(不改变摆长)并且尽量长一些(周期较大,容易测量),所以A正确;为减小摆球受阻力影响,摆球应选择质量大些、体积小些的,B正确;若摆线相距平衡位置有较大的角度,则单摆就不能视为简谐运动了,故C错误;在测量周期时,应在摆球经过最低点开始计时,测量多次全振动的周期,所以D错误.
(3)根据单摆的周期公式T=2π
l4π2
,解得重力加速度g=2l,若误将摆线长当作摆长,gT
则l偏小,g偏小,选项A正确;测摆线线长时将摆线拉得过紧,则l测量值偏大,g偏大,选项B错误;摆动过程中悬挂点松动了,则周期变大,g偏小,选项C正确;实验中误将49次全振动计为50次,则周期偏小,g偏大,选项D错误.
[答案] (1)平衡位置 (2)AB (3)AC
1.某同学想在家里做“用单摆测定重力加速度”的实验,但没有合适的摆
球,他找到了一块大小约为3 cm、外形不规则的大理石代替小球.他设计的实验步骤如下:
A.将石块和细尼龙线系好,结点为M,将尼龙线的上端固定于O点,如图所示; B.用刻度尺测量OM间尼龙线的长度l作为摆长; C.将石块拉开一个大约α=5°的角度,然后由静止释放;
t
D.从摆球摆到最高点时开始计时,测出30次全振动的总时间t,由T=得出周期;
30E.改变OM间尼龙线的长度再做几次实验,记下每次相应的l和T;
2π?
F.求出多次实验中测得的l和T的平均值,作为计算时用的数据,代入公式g=??T?l,求出重力加速度g.
(1)该同学以上实验步骤中有重大错误,请指出并改正为
________________________________________________________________________. (2)该同学用OM的长作为摆长,这样做引起的系统误差将使重力加速度的测量值比真实值________(选填“偏大”或“偏小”).
(3)为解决摆长无法准确测量的困难,可采用图像法,以T2为纵轴,以l为横轴,作出多次测量得到的T2-l图线,求出图线斜率k,进而求得g=________(用k表示).k值不受悬点不确定因素的影响,因此可以解决摆长无法准确测量的困难.
解析:(1)实验步骤中有错误的是
B:用刻度尺测量大理石重心到悬挂点间的距离才是摆长. D:应在摆球经过平衡位置时计时.
F:应该用各组的l、T求出各组的g后,再取平均值. (2)由单摆的周期公式T=2π
l4π2l
得:g=2.可知,该同学用OM的长作为摆长,摆长偏gT
2
小,由此式可知,g的测量值偏小.
(3)画出
T2-l
图线,由
T2=
4π24π24π2
l可知,图像的斜率k=,即g=,解决了摆长无法准ggk
确测量的困难.
4π2
答案:(1)见解析 (2)偏小 (3)
k
对实验数据处理的考查
4π2l
1.平均值法:每改变一次摆长,都将相应的l和T代入公式g=2中求出g值,并最后
T求出g的平均值.
l
2.图像法:由单摆周期公式不难推出g=4π22,因此,分别测出一系列摆长l对应的周
T期T,作l-T2的图像,图像应是一条通过原点的直线,如图所示.求出图像的斜率k,即可lΔl
求得g值.g=4π2·k,k=2=2.
TΔT
在用平均值法求重力加速度时,一个摆长对应一个周期,算出其重力加速度,
然后改变摆长,测出其对应的周期,算出重力加速度,算出重力加速度的平均值.
用单摆测定重力加速度的实验装置如图甲所示.
(1)组装单摆时,应在下列器材中选用________. A.长度为1 m左右的细线 B.长度为30 cm左右的细线 C.直径为1.8 cm的塑料球 D.直径为1.8 cm的铁球
(2)测出悬点O到小球球心的距离(摆长)L及单摆完成n次全振动所用的时间t,则重力加速度g =________(用L、n、t表示).
(3)下表是某同学记录的3组实验数据,并做了部分计算处理.
组次 摆长L/cm 50次全振动时间t/s 振动周期T/s 重力加速度g/(m·s2) -1 80.00 90.0 1.80 9.74 2 90.00 95.5 1.91 9.73 3 100.00 100.5 请计算出第3组实验中的T=______s,g=______m/s2.