2019-2020中考数学试卷(带答案)
一、选择题
1.下列计算正确的是( ) A.2a+3b=5ab ( ) A.4.6?109 A.a2?a2?a4
B.46?107 B.a3?a4?a12
C.4.6?108 C.(a3)4?a12
D.0.46?109 D.(ab)2?ab2
3.下列运算正确的是( )
B.( a-b )2=a 2-b 2 C.( 2x 2 )3=6x 6
x3=x5 D.x8÷
2.预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学计数法表示为
4.下列关于矩形的说法中正确的是( ) A.对角线相等的四边形是矩形 B.矩形的对角线相等且互相平分 C.对角线互相平分的四边形是矩形 D.矩形的对角线互相垂直且平分
5.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( ) A.中位数
B.平均数
C.众数
D.方差
6.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )
A.15° B.22.5° C.30° D.45°
7.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( )
A.21.7米 B.22.4米 C.27.4米 D.28.8米
k
(k?0,x
45x?0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为,
2则k的值为( )
8.如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数y?
A.
5 4B.
15 4C.4 D.5
?2x?1<39.不等式组?的解集在数轴上表示正确的是( )
?3x?1??2A.
C.D.
B.
D.(3,﹣1)
10.已知直线y=kx﹣2经过点(3,1),则这条直线还经过下面哪个点( ) A.(2,0) a0?a2=a4 A.a2÷
C.(﹣1.5)8÷(﹣1.5)7=﹣1.5 12.cos45°的值等于( ) A.2
B.1
C.
B.(0,2)
C.(1,3) B.a2÷(a0?a2)=1 D.﹣1.58÷(﹣1.5)7=﹣1.5
11.下列计算错误的是( )
3 2D.
2 2二、填空题
13.已知x?6?2,那么x2?22x的值是_____.
14.如图所示,过正五边形ABCDE的顶点B作一条射线与其内角?EAB的角平分线相交于点P,且?ABP?60?,则?APB?_____度.
15.分解因式:2x3﹣6x2+4x=__________.
16.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .
17.已知扇形AOB的半径为4cm,圆心角∠AOB的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm
18.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量 出芽种子数 A 发芽率 出芽种子数 B 发芽率 100 96 0.96 96 0.96 200 165 0.83 192 0.96 500 491 0.98 486 0.97 1000 984 0.98 977 0.98 2000 1965 0.98 1946 0.97 下面有三个推断:
①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样; ②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;
③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).
19.已知a?b?b?1?0,则a?1?__.
?x?y?620.二元一次方程组?的解为_____.
2x?y?7?三、解答题
21.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张
卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率. 22.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
23.4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈
51212,cos67°≈,tan67°≈,135132≈1.414).
24.已知:如图,点E,A,C在同一条直线上,AB∥CD,AB=CE,AC=CD.
求证:BC=ED.
25.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有 人;
(2)补全条形统计图,并在图上标明相应的数据;
(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】
分析:A.原式不能合并,错误;
B.原式利用完全平方公式展开得到结果,即可做出判断; C.原式利用积的乘方运算法则计算得到结果,即可做出判断; D.原式利用同底数幂的除法法则计算得到结果,即可做出判断. 详解:A.不是同类项,不能合并,故A错误; B.(a﹣b)2=a2﹣2ab+b2,故B错误; C.( 2x 2 )3=8x 6,故C错误; D.x8÷x3=x5,故D正确. 故选D.
点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.
2.C
解析:C 【解析】 【分析】
10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把科学记数法的表示形式为a×
原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数. 【详解】
460 000 000=4.6×108. 故选C. 【点睛】
10n的形式,其中1≤|a|<此题考查科学记数法的表示方法.科学记数法的表示形式为a×10,n为整数,表示时关键要正确确定a的值以及n的值.
3.C
解析:C