好文档 - 专业文书写作范文服务资料分享网站

用示波器观察铁磁材料的动态磁滞回线-实验报告

天下 分享 时间: 加入收藏 我要投稿 点赞

用示波器观察铁磁材料的动态磁滞回线-实验报告

用示波器观察铁磁材料动态磁滞回线

【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。软磁材料的矫顽力Hc小于100A/m,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。磁滞回线是反映铁磁材料磁性的重要特征曲线。矫顽力和饱和磁感应强度Bs、剩磁Br P等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。

【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H 【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。本实验主要运用示波器的X输入端和Y输入端在屏幕上显示的图形以及相关

B 数据,来分析形象磁滞回线的一些因素,并根据

a 数据的处理得出动态磁滞回线的大致图线。

Bs 【实验目的】

1. 认识铁磁物质的磁化规律,比较两种典

Br 型的铁磁物质的动态磁化特性。

c 2. 测定样品的HD、Br、BS和(Hm·Bm)等参

o 数。

Hc Hm H 3. 测绘样品的磁滞回线,估算其磁滞损耗。

b' 【实验仪器】

电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。 a' 【实验原理】

图1 起始磁化曲线和磁滞回线 铁磁物质是一种性能特异,用途广泛的材

料。铁、钴、镍及其众多合金以及含铁的氧化物

(铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。

图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段oa所示,继之B随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至HS时,B到达饱和值BS,oabs称为起始磁化曲线。图1表明,当磁场从HS逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“O”点,而是沿另一条新的曲线SR下降,比较线段OS和SR可知,H减小B相应也减小,但B的变化滞后于H的变化,这现象称为磁滞,磁滞的明显特征是当H=O时,B不为零,而保留剩磁Br。

当磁场反向从O逐渐变至-HD时,磁感应强度B消失,说明要消除剩磁,必须施加反向磁场,HD称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD称为退磁曲线。

图1还表明,当磁场按HS→O→HD→-HS→O→HD′→HS次序变化,相应的磁感应强度B则沿闭合曲线SRDS?R?D?S变化,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

B H 2

图1 铁磁图2 同一铁磁材料的 图 3 铁磁材料

应该说明,当初始态为H=B=O的铁磁材料,在交变磁场强度由弱到强依次进行磁化,可以得到面积由小到大向外扩张的一簇磁滞回线,如图2所示,这些磁滞回线顶点的连线称为铁磁材料的基本磁化曲线,由此可近似确定其磁导率μ?B,因B与H非线性,故

H铁磁材料的μ不是常数而是随H而变化(如图3所示)。铁磁材料的相对磁导率可高达数千乃至数万,这一特点是它用途广泛的主要原因之一。

可以说磁化曲线和磁滞回线是铁磁材料分类和选用的主要依据,图4为常见的两种典型的磁滞回线,其中软磁材料的磁滞回线狭长、矫顽力、剩磁和磁滞损耗均较小,是制造变压器、电机、和交流磁铁的主要材料。而硬磁材料的磁滞回线较宽。矫顽力大,剩磁强,可用来制造永磁体。

观察和测量磁滞回线和基本磁化曲线的线路如图五所示。待测样品为EI型矽钢片,N为励磁绕组,n为用来测量磁感应

强度B而设置的绕组。R1为励磁电流取样电阻,设通过N的交流励磁电流为i,根据安培环路定律,样品的磁化场强

Ni H?1 L为样品的平均磁路

L

∵ i?U1R1

?H?N1?UH (1) LR1(1)式中的N1、L、R1均为已知常数,所以由UH可确定H。

在交变磁场下,样品的磁感应强度瞬时值B是测量绕组n和R2C电路给定的,根据法拉第电磁感应定律,由于样品中的磁通φ的变化,在测量线圈中产生的感生电动势的大小为

3

?2?n??d?dt1?2dt?n?1B???2dt?SnS (2)

ε2?i2R2?UB

S为样品的截面积。如果忽略自感电动势和电路损耗,则回路方程为

式中i2为感生电流,UB为积分电容C两端电压,设在Δt时间内,i2向电容C2的充电电量为Q,则

UB?QQ ?ε2?i2R2? CC如果选取足够大的R2和C,使i2R2>>Q/C,则

?2?i2R2

dUBdQ ?C2dtdtdUB ?ε2?C2R2 (3)

dt由(2)、(3)两式可得

∵ i2? B?CR2UB (4) N2S上式中C、R2、n和S均为已知常数。所以由UB可确定B0

综上所述,将图5中的UH和UB分别加到示波器的“X输入”和“Y输入”便可观察样品的B-H曲线;如将UH和UB加到测试仪的信号输入端可测定样品的饱和磁感应强度BS、剩磁Rr、矫顽力HD、磁滞损耗〔WBH〕以及磁导率μ等参数。 【实验内容与步骤】

一 根据线圈阻值估计线圈匝数

1 按照图示连接电路;

2 移动滑动变阻器,使电流表和电压表的示数超过2/3表盘,然后记录电压表电流表的示数.

3 分别测左线圈和右线圈的阻值;

4 测量线圈直径,计算线圈的横截面积. 二 不同电压下磁滞回线数据的测量

1. 电路连接:按电路图连接线路,并令R1=2.5Ω。UH和UB分别接示波器的“X输入”和“Y输入”。

2. 样品退磁:开启实验仪电源,对试样进行退磁,即顺时针方向转动“U选择”旋钮,

4

令U从0增至10V,然后逆时针方向转动旋钮,将U从最大值降为O,其目的是消除剩磁,确保样品处于磁中性状态,如图6所示。

3. 观察磁滞回线:开启示波器电源,调至X-Y方式,且X输入端和Y输入端都为“DC”。令光点位于坐标网格中心,令U=6.0V,并分别调节示波器x和y轴的灵敏度,使显示屏上出现图形大小合适的磁滞回线(若图形顶部出现编织状的小环,如图7所示,这时可降低励磁电压U予以消除)。

4. 观察基本磁化曲线,按步骤2对样品进行退磁,从U=0开始,逐档提高励磁电压,将在显示屏上得到面积由小到大一个套一个的一簇磁滞回线。这些磁滞回线顶点的连线就是样品的基本磁化曲线,借助长余辉示波器,便可观察到该曲线的轨迹。

5. 测绘μ-H曲线:仔细阅读测试仪的使用说明,接通实验仪和测试仪之间的连线。开启电源,对样品进行退磁后,依次测定U=0.5,1.0…3.0V时的十组Hm和Bm值,作μ~H曲线。

7. 令U=11.0V,R1=2.5Ω测定样品1的BS,Rr,HD,WBH,等参数。

8. 取步骤7中的H和其相应的B值,用坐标纸绘制B-H曲线(如何取数?取多少组数据?自行考虑),并估算曲线所围面积。 【数据记录及处理】

一 根据线圈阻值估计线圈匝数。

已知0.5mm直径的漆包线每米长度对应1.678欧姆。 线圈 参数 U(v) I(mA) L=R/1.678(m) 匝数 左线圈 0.379 43.40 5.20 180匝 右线圈 0.258 46.25 3.33 65匝 二 不同电压下磁滞回线数据的测量 励磁绕组N1(砸):180 测量绕组N2(砸):65 平均磁路L(mm):50

电容C(μF):4.3 电阻R1(Ω):2.5 电阻R2(kΩ):60 截面S(mm2): 200 U(V) 2hm(mV) 2bm(mV) hm(mV) bm(mV) U1(mVI1(mA) ) 4.0 302.0 298.0 302.5 104.5 104.0 102.0 300.83 103.50 95.01 38.00 5.0 369.0 371.5 370.0 132.5 134.2 134.0 370.17 133.57 115.0 46.00 6.0 441.0 442.5 442.0 163.0 168.0 166.0 441.83 165.67 137.0 54.80 7.0 524.0 521.0 522.0 193.0 192.0 192.0 522.33 192.33 162.0 64.80

5

图6 退磁示意图 图

用示波器观察铁磁材料的动态磁滞回线-实验报告

用示波器观察铁磁材料的动态磁滞回线-实验报告用示波器观察铁磁材料动态磁滞回线【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。软磁材料的矫顽力Hc小于100A/m,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。磁滞回线是反映铁磁材料磁性的重要特征曲线。矫顽力和饱和磁
推荐度:
点击下载文档文档为doc格式
0o0wq2ngpx1jxus0hkxz44s0w0d4pn00w3g
领取福利

微信扫码领取福利

微信扫码分享