word 1—1 试回答如下各问题:
(1)等位面上的电位处处一样,因此面上各处的电场强度的数值也句话对吗,试举例说明。 L』J米处吧议g=u,囚此那里Bg电场C=一vg=一V 0=0。对吗? (3)甲处电位是10000v,乙处电位是10v故甲处的电场强度大于乙处的 电场强度。对吗?
答 此三问的内容根本一致,均是不正确的。静电场中电场强度是电位函数的梯度,即电场强度E是电位函数甲沿最大减小率方向的空间变化率。P的数值大小与辽的大小无关,因此甲处电位虽是10000v,大于乙处的电位,但并不等于甲处的电场强度大于乙处的电场强度。在等位面上的电位均相等,只能说明沿等位面切线方向,电位的变化率等于零,因此等位面上任一点的电场强度沿该面切线方向的分量等于军,即fl=0。而电位函数沿等位面法线方向的变化宰并不一定等于零,即Zn不一定为零,且数值也不一定相等。即使等位面上g;0,该面上任一点沿等位面法线方向电位函数的变化串也不一定等于零。例如:静电场中导体外表为等位面,但导体外表上电场强度召垂直于导体外表,大小与导体外表各点的曲率半径有关,曲率半径越小的地方电荷面密度越大.电场强度的数值也越大o
1—2 电力线是不是点电荷在电场中的运动轨迹(设此点电荷陈电场力外 不受其它力的作用)?
答 电力线仅表示该线上任—点的切线方向与该点电场强度方向一致,即表示出点电荷在此处的受力方向,但并不能表示出点电荷在该点的运动方向,故电力线不是点电荷在电场中的运动轨迹。 1—3 证明:等位区的充要条件是该区域内场强处处为零。
证明 假如等位区内某点的电场强度不为零,由厦;一v9可知v9乒0.即此点的电位函数沿空间某方向的空间变化率不为零,如此在此方向上电位必有变化.这与等位区的条件矛盾。假如等位区内处处电位相等,如此等位区内任—数的空间变化率为零,即仟·点的电场强度为零。由此可知命题成立 1—4 下例说法是否正确?如不正确,请举一反例加以论述o (1)场强相等的区域,电位亦处处相等u(2)电位相等处,场强也相等。 (3)场强大处,电位一定高。 (4)电场为零处,电位一定为零c (5)电位为零处、场强一定等于零。
苔 根据电场强度和电位的关系B=—v9可知:
(1)不正确。因厦相等的区域Pg必为空间坐标的函数。电容器内场强相等,但其内部电位却是变化的。 (2)不正确。因9相等处,不等于v甲相等。如不规如此带电导体外表上:钎点电位均相等,们外表上—各点处的场强并不相等。
(3)不正确。因x大的地方.只明确甲的梯废大.而不是9位高。如上例中导体尖端处场强大,但外表1—各处电位相等并不—定高.电位位与参考点所选位置有关。
(4)不正确。阅5—=o,说明v69=o,即开=t:。如高电压带电导体球,其内部电场等于零,但该球内任一点的电位却不为零,而为菜—常数f
(5)不正确。因严=o处,不一亿vP=0所以五不—’定为零c如充电平行板电容器中,一个极板接地电位为零,但该极板相对另’—极板的外表上电场强度不为零。
1—5 两条电力线能否相切?同一条电力线上任意两点的电位能否相等?为什么?
答 电力线的疏密表示电场强度的弱或强,电力线越密,说明该处的场强越大。因此,假如两条电力线相切,在切点处两条电力线无限靠近,即表东切点处的场强趋于无限大,这是不符合实际的,所以电力线不能构切。因为严=j五dj,说明间—〞条电力线上任意两点的电位不能相等,沿电力线方向电位在减小。 1—6 不同电位的两个等位面能否相交或相切7同一等位面内任意两点的场强是否一定相等?场强在等位面上的切向分量是否—定等于零?电依在带电面两侧会不会突变?
答 不同电位的两个等位面不能相交或相切,否如此在交点或切点上的电位特有两个不同的电位值。第2,3问可参见思考题1—t的解答。内电位函数在分界面上的衔接条件
1 / 25
word
2 / 25
word
3 / 25