(i)???af(x,y)dx关于y在任何闭区间?c,d?上一致收敛,???cf(x,y)dy
关于x在任何区间?a,b?上一致收敛; (ii)积分???adx???cf(x,y)dy与???cdy???af(x,y)dx (18)
中有一个收敛,
则(18)中另一个积分也收敛,且
?????????
31. 解: 因为?xdy?abyadx?cf(x,y)dy??cdy?af(x,y)dx.
x?xlnxba,所以I??10ydx?xdy. 由于函数x在R??0,1???a,b?上
bya满足定理19.6的条件,所以交换积分顺序得到
I??bady?xdx?01y?b11?yady?ln1?b1?a.
32. 解: 因为
?1?x?xlim?sin?ln??0, x?0xlnx???1?x?xlim?sin?ln??0 x?0xlnx??baba所以该积分是正常积分.
交换积分次序, 得
?1?x?xI??sin?ln?dx?0x?lnx?1ba?1?sinln??0?x??1??baxdydx?y??ba?1y?1??xsin?ln?dx?dy. ??0x????在上面的内层积分中作变换ln101x?u,有
??0?于是
I??1?yxsin?ln?dx??x??e?(y?1)usinudu?11?(y?1)2,
?ba?1y?1??xsin?ln?dx?dy???0x?????ba11?(y?1)2dy?arctan(b?1)?arctan(a?1).
解法二: 取b为参量, 利用积分号下求导数的方法,有
I'(b)?1?1?b sinlnxdx??2?0?x1?(1?b)??1积分上式,可得
16
I(b)?arctan(b?1)?c
由于I(a)?0,即有c??arctan(a?1),于是有
I?I(b)?arctan(b?1)?arctan(a?1).
33. 解: 因为
I?sinbx?sinaxx????bacosxydy,所以
dx??0e?pxsinbx?sinaxx???0eb?px?bcosxydy?dx ????a? ?由于e?pxcosxy?e?px及反常积分?反常积分
???0dx?ea?pxcosxydy (21)
??0e?pxdx收敛,根据魏尔斯特拉斯M判别法,含参量
?的顺序,积分I的值不变.于是
I???0e?pxcosxydx
在?a,b?上一致收敛.由于e?pxcosxy在?0,??)??a,b?上连续,根据定理19.11交换积分(21)
?bady???0e?pxcosxydx??b2pp?y2ady
ba ?arctan?arctan.
pp在上述证明中,令b?0,则有
F(p)????0e?pxsinaxxdx?arctanap(p?0), (22)
由阿贝耳判别法可得上述含参量反常积分在p?0上一致收敛.于是由定理19.9,F(p)在
p?0上连续,且
F(0)????sinaxx0dx.
又由(22)式
I(a)?F(0)?lim?F(p)?lim?arctanp?0p?0ap??2sgna.
在上式中,令a?1,则有I?34. 解: 由于e?x2?2.
??cosrx?e?x2对任一实数r成立及反常积分?17
0e?x2收敛,所以原积分在
①
r????,???上收敛.
考察含参量反常积分
?由于?xe?x2??02?e?x2cosrx?'dx?r???0?xe?x2sinrxdx, (24)
??sinrx?xe?x对一切x?0,???r???成立及反常积分?0xe?x2dx收敛,
根据魏尔斯特拉斯M判别法,含参量积分(24)在???,???上一致收敛. 综合上述结果由定理19.10即得
?(r)?'???0?xe?x2sinrxdx?limAA????A0?xe2?x2sinrxdx
?1?x2A1sinrx? ?lim?eA????202??0re?x?cosrxdx?
?? ??于是有
?2r??0e?x2cosrxdx??r2??r?.
ln??r???r24??lnc,
r2??r??ce4. ?2从而??0??c,又由原积分,??0?????0e?x2dx?,所以c??2,因此得到
??r??35. 解: 把含参数a的反常积分
Ik(a)??2e?r24.
???0e?kxsinaxxdx(k?0,a?0).
中的被积函数关于a求偏导数, 可得
?当k?0时, 有
e??0e?kxcosaxdx,
?kxcosxy?e?kx,
因此,由M判别法, 号下求导,即
???0e?kxcosaxdx关于参量a?0是一致收敛的,因此对Ik(a)可以在积分
ddaIk(a)????0e?kxcosaxdx?ka?k22.
因为Ik(0)?0,所以
18
Ik(a)??a021ka?k2da1?arctanak.
于是
I(a)????0sinaxxdx?dx?lim?k?0???0e?kxsinaxxdx?lim?arctank?0ak??2.
令a?1,有I????0sinxx2??2.
2236.解:?|y|ds?L?0|sin?|sin??cos?d??2?sin?d??4.
0?37.解: 直线段的参数方程是:
?x?t??y?2t?z?3t?0?t?1,
于是,?(x?y)dx?(y?z)dy?(z?x)dz?L?[(t?2t)?2(2t?3t)?3(3t?t)]dt
01??107tdt?72?.
Pdx?Qdy?38.解:原式??b0C?B,A??AB??Pdx?Qdy y
AB????4dxdy????2?0?dx C?A,B? D ??4S?2b
A?0,0? B?b,0? x 39.解: ???3xy?C??213?32y?dx??x?3xy?dy 3????3x2?3y2?4???3x2?3y2??dx?????D??4dx?4ab?D.
40.解: 由于
d(xy?yz?zx)?(2xy?z)dx?(2yz?x)dy?(2zx?y)dz,因此,全微分(2xy?z)dx?(2yz?x)dy?(2zx?y)dz的原函数是xy?yz?zx?C.
222222222222
41.解:(Ⅰ).画出积分区域
y 19
y?x y?x o x
(Ⅱ).???x?y?dxdy?D222? 1 0dx? x x?3132?32. ?x?y?dy??0?x?x?x?dx?2022??142.解:????x?y?z?dxdydz?V? 2? 0d?? ?4 0d?? R 0r?rsin?dr
22?? 2? 0d??? ?4 0sin?d??? R 0rdr?2????cos??4? 04?R55?12??52?R.
?543.解: y v
v?u2 v?u
o x o u
12212xyxy?xy?xy?2y???0. (Ⅰ). 由?????,得2x?aabbababab??2xy?xy?2于是??B?4AC?22?22?0,故?????是抛物线.令y?0,得
ababab?ab?xy?xy?x?0,x?a.故?????与x轴相交于?0,0?,?a,0?.
ab?ab?2442?xa?xy???u,x?u?v,??????x,y??ab??u2(Ⅱ).令? ,则?,故 ??y??u,v??x?y?v.?y?b?u?v?.???2?u?ab(Ⅲ).
uab 1ababab?du?dv?S???dxdy???dudv?dudv? 0? u2??2222DD'D'2?x2y?44.解:??sin?2?2?dxdy ?b??aD2?x?v?y?v 1a?2b22a2?b2ab??ab2.
??u?u?du?12 0.
?2 2? 0d??sinr?rdr
02 122???V 1 0sinrdr??222? 1 01?cos2r??1212?dr???r?sin2r??.
424??022145.解:???zdxdydz?? 2? 0d?? 3 0dr?r2 3 4?rz?rdz
20