一招教你搞定不定方程
一 相关概念 1.什么是不定方程
未知数个数多于方程个数的方程,叫做不定方程,比如:3x+4y=42就是一个二元一次方程。在各类公务员考试中通常只讨论它的整数解或正整数解。在解不定方程问题时,我们可以利用整数的奇偶性、自然数的质合性、数的整除特性、尾数法、特殊值法、代入排除法等多种数学知识来得到答案。但是方法越是繁多,我们在备考过程中学习的压力就越大,为了让大家更好的地理解和掌握不定方程的求解问题,这里我们介绍一种“万能”的方法——利用同余性质求解不定方程。 2.什么是余数
被除数减去商和除数的积,结果叫做余数。比如:19除以3,如果商6,余数就是1;如果商是5,余数就是4;如果商是7,余数就是-2.(注意,这里余数的概念指的是广义上的概念,即余数不再是比除数小的正整数)。
3.关于同余特性
①余数的和决定和的余数
例:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1;23,24除以5的余数分别是3和4,所以23+24除以5的余数等于余数和7,正余数是2. ②余数的差决定差的余数;
例:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等 于2,即两个余数的差3-1;16-23除以5的负余数为-2,正余数为3. ③余数的积决定积的余数;
例:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
二 利用同余性质解不定方程
例1:解不定方程x+3y=100,x,y皆为整数。 A 41 B 42 C 43 D 44
解析:因为3y能够被3整除,100除以3余1,根据余数的和决定和的余数,x除以3必定是余1的,所以答案为C。
例2::今有桃95个,分给甲,乙两个工作组的工人吃,甲组分到的桃有2/9是坏的,其他是好的,乙组分到的桃有3/16是坏的,其他是好的。甲,乙两组分到的好桃共有多少个?
A.63
B.75
C.79
D.86
解析:由题意,甲组分到的桃的个数是9的倍数,乙组分到的桃的个数是16的倍数。设甲组分到的桃有9x个,乙组分到16y个,则9x+16y=95。因为9x可以被9整除,所以95除以9的余数就等于16y除以9的余数,95除以9余5(或者余14),16y除以9的余数由16除以9的余数(7)和y除以9的余数之积决定,所以可以推出:y除以9的余数是2,那么y的值只能取2,进而求出x=7,,则甲、乙两组分到的好桃共有7x+13y=7×7+13×2=75个,答案选B。