PN结正向压降温度特性 及正向伏安特性的研究
一、实验目的
1.了解PN结正向压降随温度变化的基本关系式,了解用PN结测温的方法。
2.在恒流供电条件下,测绘PN结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN结材料的禁带宽度。 3.了解二极管的正向伏安特性,测量波尔兹曼常数。
二、实验原理
(一)PN结正向压降与温度的关系
理想PN结的正向电流IF和压降VF存在如下近似关系 IF?Isexp(qVF) (1) kT其中q为电子电荷;k为波尔兹曼常数;T为绝对温度;Is为反向饱和电流,它是一个和PN结材料的禁带宽度以及温度等有关的系数,可以证明
Is?CTexp[?rqVg(0)kT] (2)
(注:(1),(2)式推导参考 刘恩科 半导体物理学第六章第二节)
其中C是与结面积、掺质浓度等有关的常数:r也是常数;Vg(0)为绝对零度时PN结材料的导带底和价带顶的电势差。
将(2)式代入(1)式,两边取对数可得
?kcIn VF?Vg(0)???qIF??kTr?T?InT?V1?Vn1 ?q?(3)
其中
?kcV1?Vg(0)??In?qIF?
KTVn1??InTrq???T?
??这就是PN结正向压降作为电流和温度函数的表达式,它是PN结温度传感器的基本方程。令IF=常数,则正向压降只随温度而变化,但是在方程(3)中,除线性项V1外还包含非线性项Vn1项所引起的线性误差。
设温度由T1变为T时,正向电压由VF1变为VF,由(3)式可得
VF?Vg(0)?Vg(0)?VF1??TkT?T??1n??? (4) T1q?T?1?r按理想的线性温度影响,VF应取如下形式:
VF理想?VF1??VF1(T?T1) (5) ?T?V?VF1等于T1温度时的F值。
?T?T由(3)式可得
Vg(0)?VF1k?VF1 ???r (6)
?TT1q所以
?Vg?VF1k?V理想 ?VF1????r??T?T1?Tq?1?
Tk ?Vg(0)?Vg(0)?VF1??T?T1?rT1q??(7)
由理想线性温度响应(7)式和实际响应(4)式相比较,可得实际响应对线性的理论偏差为
kkTT??V理想?VF??r?T?T1??Ln()r (8)
qqT1设T1=300°k,T=310°k,取r=3.4*,由(8)式可得?=0.048mV,而相应的VF的改变量约20mV,相比之下误差甚小。不过当温度变化范围增大时,VF温度响应的非线性误差将有所递增,这主要由于r因子所致。
综上所述,在恒流供电条件下,PN结的VF对T的依赖关系取决于线性项V1,即正向压降几乎随温度升高而线性下降,这就是PN结测温的依据。必须指出,上述结论仅适用于杂质全部电离、本征激发可以忽略的温度区间(对于通常的硅二极管来说,温度范围约-50℃—150℃)。如果温度低于或高于上述范围时,由于杂质电离因子减小或本征载流子迅速增加;VF—T关系将产生新的非线性,这一现象说明VF—T的特性还随PN结的材料而异,对于宽带材料(如GaAs)的PN结,其高温端的线性区则宽;而材料杂质电离能小(如InSb)的PN结,则低温端的线性范围宽,对于给定的PN结,即使在杂质导电和非本征激发温度范围内,其线性度亦随温度的高低而有所不同,这是非线性项Vn1引起的,由Vn1对T
d2Vn11dVn1?可知的二阶导数的变化与T成反比,所以VF-T的TdTdT2