压缩UF-tree挖掘不确定数据频繁项
CHEN Chao-quan;HUANG Jia-huan;JIANG Yun-hui
【期刊名称】《计算机应用研究》 【年(卷),期】2014(031)003
【摘要】UF-growth algorithm generated a large number of tree nodes and branches, and it needed to constantly calculate the support of candidate data items. To solve these problems, this paper proposed a new algorithm named compressed UF-tree. The algorithm change%针对UF-growth算法构造大量树节点和分支的局限性,且不断计算候选数据项支持度的不足,提出压缩UF-tree算法。压缩UF-tree算法改变建树条件:事务中数据项与树中某个分支节点的数据项匹配时,将该数据项合并到分支中;否则,从该分支节点创建新的分支,叶节点保存当前事务编号。构建单项数据项的概率向量,搜索树分支产生候选项,通过事务编号和概率向量计算候选数据项的支持度进而挖掘频繁项。通过实验对比与分析,压缩UF-tree算法可行且更高效。
【总页数】4页(716-719)
【关键词】数据挖掘;不确定数据;事务;分支;概率向量;频繁项 【作者】CHEN Chao-quan;HUANG Jia-huan;JIANG Yun-hui
【作者单位】College of Information Science & Engineering,Guilin University of Technology,Guilin Guangxi 541004,Chin;College of Information Science & Engineering,Guilin University of Technology,Guilin Guangxi 541004,Chin;College of Information Science &