例如,图中水平面光滑,A、B质量相等为m,A、B间最大静摩擦力为
f,则F为多少时,A、B发生相对运动。
分析:力F很小时,加速度小,A对B的摩擦力小,A、B一起运动。随着力F增大,加速度a增大,A对B的摩擦力增大,最大静摩擦力是极限,此时aB=,A、B恰不发生相对运动,a=aB,则F=2ma=2f。
fm(4)加速度最大与速度最大的临界条件:当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大(小)时,具有最大(小)加速度;当加速度与速度方向一致时,物体加速,当a=0时,速度达最大;当加速度与速度方向相反时,物体减速,当a=0时,速度达最小。
例如:自由下落的小球下落一段时间后与弹簧接触,从它开始接触弹簧到弹簧压缩到最短的过程中,加速度和速度的变化情况讨论如下:
①小球接触弹簧上端后受两个力作用:向下的重力和向上的弹力。在接触后的前一阶段,重力大于弹力,合力向下,因为弹力F=kx不断增大,所以合力不断变小,故加速度也不断减小,由于加速度与速度同向,因此速度不断变大。
②当弹力逐渐增大到与重力大小相等时,合外力为零,加速度为零,速度达到最大。(注意:此位置是两个阶段的转折点)
③后一阶段,即小球达到上述平衡位置之后,由于惯性仍继续向下运动,弹力大于重力,合力向上,且逐渐变大,因而加速度逐渐变大,方向向上,小球做减速运动,因此速度逐渐减小到零,到达最低点时,弹簧的压缩量最大。
特别提醒
(1)有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点。
(2)若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应临界状态。
(3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点。
(4)若题目要求“最终加速度”“稳定加速度”等,即是求收尾加速度或收尾速度。
3.解决临界(极值)问题的基本思路
(1)认真审题,详尽分析问题中变化的过程(包括分析整体过程中有几个阶段);
(2)寻找过程中变化的物理量;
(3)探索物理量的变化规律;
(4)确定临界(极值)状态,分析临界(极值)条件,找出临界(极值)关系。
特别提醒
解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,挖掘隐含的条件是解题的关键,要特别注意可能出现的多种情况。
三、滑块——木板类问题
1.类型特征
上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动。
2.“滑块——木板类”问题的分析思路
3.滑块与滑板类问题的解法说明
(1)判断滑块与滑板间是否存在相对滑动是思考问题的着眼点,方法有整体法、隔离法、假设法等。即先假设滑块与滑板相对静止,然后根据牛顿第二定律求出滑块与滑板之间的摩擦力,再分析滑块与滑板之间的摩擦力是不是大于最大静摩擦力。
(2)滑块与滑板存在相对滑动的临界条件
①运动学条件:若两物体速度或加速度不等,则会相对滑动。
②力学条件:一般情况下,假设两物体间无相对滑动,先用整体法算出一起运动的加速度,再用隔离法算出滑块“所需要”的摩擦力Ff,比较
Ff与最大静摩擦力Ffm的关系,若Ff>Ffm,则发生相对滑动。