∴1.2<5-1<1.3, 故选B. 【点睛】
本题考查了估算无理数的大小,利用5≈2.236是解题关键.
12.C
解析:C 【解析】
【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.
【详解】A. ?x?4x??x?x?4? ,故A选项错误;
2B. x?xy?x?x?x?y?1?,故B选项错误;
2C. x?x?y??y?y?x???x?y? ,故C选项正确; D. x2?4x?4=(x-2)2,故D选项错误, 故选C.
【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.
2二、填空题
13.【解析】分析:在图形左侧添加正方形网格分别延长ABAC连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函
1解析:
3【解析】
分析:在图形左侧添加正方形网格,分别延长AB、AC,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案. 详解:如图所示,
由图形可知,?AFE?90?,AF?3AC,EF?AC, ∴tan∠BAC=
EFAC1??. AF3AC3故答案为
1. 3点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.
14.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π 解析:15π 【解析】
【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.
【详解】设圆锥母线长为l,∵r=3,h=4, ∴母线l=r2?h2?5,
11×2πr×5=×2π×3×5=15π, 22故答案为15π.
∴S侧=
【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.
15.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=2
解析:2 【解析】
由D是AC的中点且S△ABC=12,可得S?ABD?EC=
11S?ABC??12?6;同理EC=2BE即2211BC,可得S?ABE??12?4,又S?ABE?S?ABF?S?BEF,S?ABD?S?ABF?S?ADF等量33代换可知S△ADF-S△BEF=2
16.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分 解析:x?1
【解析】 【分析】
根据解分式方程的步骤,即可解答. 【详解】
方程两边都乘以x?2,得:3?2x?2?x?2, 解得:x?1,
检验:当x?1时,x?2?1?2??1?0,
所以分式方程的解为x?1, 故答案为x?1. 【点睛】
考查了解分式方程,?1?解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.?2?解分式方程一定注意要验根.
17.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到
解析:6 【解析】
分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=32,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=2AM=6. 详解:∵BD=CD,AB=CD, ∴BD=BA,
又∵AM⊥BD,DN⊥AB, ∴DN=AM=32,
又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP, ∴∠P=∠PAM,
∴△APM是等腰直角三角形, ∴AP=2AM=6, 故答案为6.
点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.
18.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>10时n是正
解析:4×109 【解析】 【分析】
10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把科学记数法的表示形式为a×
原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数. 【详解】
4400000000的小数点向左移动9位得到4.4, 109, 所以4400000000用科学记数法可表示为:4.4×109. 故答案为4.4×
【点睛】
10n的形式,其中1≤|a|<本题考查科学记数法的表示方法.科学记数法的表示形式为a×10,n为整数,表示时关键要正确确定a的值以及n的值.
19.【解析】【分析】过D作DQ⊥x轴于Q过C作CM⊥x轴于M过E作EF⊥x轴于F设D点的坐标为(ab)求出CE的坐标代入函数解析式求出a再根据勾股定理求出b即可请求出答案【详解】如图过D作DQ⊥x轴于Q
解析:25 【解析】
【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.
【详解】如图,过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,
设D点的坐标为(a,b),则C点的坐标为(a+3,b), ∵E为AC的中点, ∴EF=
11111CM=b,AF=AM=OQ=a, 2222211a,b), 22E点的坐标为(3+
把D、E的坐标代入y=解得:a=2,
k11得:k=ab=(3+a)b,
22x在Rt△DQO中,由勾股定理得:a2+b2=32, 即22+b2=9,
解得:b=5(负数舍去), ∴k=ab=25, 故答案为25.
【点睛】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等,得出关于a、b的方程是解此题的关键.
20.(±)【解析】【详解】∵MN两点关于y轴对称∴M坐标为(ab)N为(-ab)分别代入相应的函数中得b=①a+3=b②∴ab=(a+b)2=(a-b)
2+4ab=11a+b=∴y=-x2x∴顶点坐标为
解析:(±11 ,【解析】 【详解】
∵M、N两点关于y轴对称,
∴M坐标为(a,b),N为(-a,b),分别代入相应的函数中得,b=∴ab=
11). 21①,a+3=b②, 2a1,(a+b)2=(a-b)2+4ab=11,a+b=?11, 21∴y=-x2?11x,
2b114ac?b211=?11,=),即(?11,). ∴顶点坐标为(?4a2a22点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.
三、解答题
21.【整理数据】:7,4;【分析数据】(1)85,80;(2)40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,见解析. 【解析】 【分析】
由收集的数据即可得;
(1)根据众数和中位数的定义求解可得;
(2)用总人数乘以乙班样本中合格人数所占比例可得; (3)甲、乙两班的方差判定即可. 【详解】
解:乙班75.5~80.5分数段的学生数为7,80.5~85.5分数段的学生数为4, 故a=7,b=4, 故答案为:7,4;
(1)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80, 众数是x=85,
67,73,76,78,79,80,80,80,80,82,83,83,84,86,89, 中位数是y=80, 故答案为:85,80; (2)60×
10=40(人), 15即合格的学生有40人, 故答案为:40;