二次函数与四边形
一.二次函数与四边形的形状
例1.(浙江义乌市) 如图,抛物线y?x?2x?3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B 两点的坐标及直线AC的函数表达式; (2)P是线段AC上的一个动点,过P点作y轴的平 行线交抛物线于E点,求线段PE长度的最大值;
(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
练习1.(河南省实验区) 23.如图,对称轴为直线x?2A 7的抛物线经过点 2A(6,0)和 B(0,4). (1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAFy x?7 2是以OA为对角线的平行四边形.求平行四边形OEAF的面积S与x之间的函数关B(0,4) 系式,并写出自变量x的取值范围;
①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?
②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E
O 的坐标;若不存在,请说明理由.
E
F A(6,0) x
练习2.(四川省德阳市)25.如图,已知与x轴交于点A(1,0)和B(5,0)的抛物线l1的顶点为
C(3,4),抛物线l2与l1关于x轴对称,顶点为C?.
(1)求抛物线l2的函数关系式;
(2)已知原点O,定点D(0,4),l2上的点P与l1上的点P?始终关于x轴对称,则当点P运动到何处时,以点D,O,P,P?为顶点的四边形是平行四边形?
(3)在l2上是否存在点M,使△ABM是以AB为斜边且一个角为30的直角三角形?若存,y l2 求出点M的坐标;若不存在,说明理由. 5 E 4 3
2
1 A B 1 2 3 4 5 x ?1 O ?1
?2 ?3
o?4 ?5 C? l1 练习3.(山西卷)如图,已知抛物线C1与坐标轴的交点依次是A(?4,0),B(?2,0),E(0,8). (1)求抛物线C1关于原点对称的抛物线C2的解析式; (2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于
C,D两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S.若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;
(3)当t为何值时,四边形MDNA的面积S有最大值,并求出
此最大值;
(4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.
二.二次函数与四边形的面积
2
例1.(资阳市)25.如图10,已知抛物线P:y=ax+bx+c(a≠0) 与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下: x y … … -3 5- 2-2 -4 1 5- 22 0 … … (1) 求A、B、C三点的坐标;
(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;
(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围.
练习1.(辽宁省十二市2007年第26题).如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).
(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A, 点N的对应点为B, 点H的对应点为C);
(2)求出过A,B,C三点的抛物线的表达式;
(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;
(4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.
图10
练习3.(吉林课改卷)如图,正方形ABCD的边长为2cm,在对称中心O处有一钉子.动点P,点P沿A?B?C方向以每秒2cm的速度运动,到点CQ同时从点A出发,
停止,点Q沿A?D方向以每秒1cm的速度运动,到点D停止.P,Q两点用一条可伸缩的细橡皮筋联结,设x秒后橡皮筋扫过的面积为ycm.
(1)当0≤x≤1时,求y与x之间的函数关系式; (2)当橡皮筋刚好触及钉子时,求x值;
(3)当1≤x≤2时,求y与x之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时∠POQ的变化范围;
(4)当0≤x≤2时,请在给出的直角坐标系中画出y与x之间的函数图象.
2
B P
O Q
C
2A B
D P
C
O
A
Q D
3
y
2
1 O
1 2 x
练习4.(四川资阳卷)如图,已知抛物线l1:y=x-4的图象与x轴相交于A、C两点,B是抛物线l1上的动点(B不与A、C重合),抛物线l2与l1关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D.
(1) 求l2的解析式;
(2) 求证:点D一定在l2上; (3) □ABCD能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值
.
三.二次函数与四边形的动态探究
例1.(荆门市)28. 如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.
(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;
(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;
(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.
yCEOFBDP图1
AxCyDBEFOPAx图2
例2.(2010年沈阳市第26题)、已知抛物线y=ax2+bx+c与
x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB (1)求A、B、C三点的坐标; (2)求此抛物线的表达式; (3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点 B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的 取值范围; (4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.