好文档 - 专业文书写作范文服务资料分享网站

2020高中物理选修3-3热学知识点汇总

天下 分享 时间: 加入收藏 我要投稿 点赞

2020高中物理选修3-3热学知识点汇总

2020高中物理选修3-3热学知识点汇总

第一章 分子动理论

1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径

(2)1mol任何物质含有的微粒数相同NA=6.02x1023mol-1

(3)对微观量的估算:分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体)

利用阿伏伽德罗常数联系宏观量与微观量

Ⅰ.微观量:分子体积V0、分子直径d、分子质量m0.

Ⅱ.宏观量:物体的体积V、摩尔体积Vm,物体的质量m、摩尔质量M、物体的密度ρ. 特别提醒:1、固体和液体分子都可看成是紧密堆集在一起的。分子的体积V0=NA,仅适用于固体和液体,对气体不适用,仅估算了气体分子所占的空间。 2、对于气体分子,

的值并非气体分子的大小,而是两个相邻的气体分子之间的平

Vm

均距离.

2、分子永不停息的做无规则的热运动(布朗运动 扩散现象)

(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有空隙,温度越高扩散越快。可以发生在固体、液体、气体任何两种物质之间 (2)布朗运动:它是悬浮在液体(或气体)中的固体微粒的无规则运动,是在显微镜下观察到的。

①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。

③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。

(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力

(1)分子间同时存在引力和斥力,两种力的合力又叫做分子力。

(2)分子之间的引力和斥力都随分子间距离增大而减小,随分子间距离的减小而增大。但总是斥力变化得较快。

(3)图像:两条虚线分别表示斥力和引力;

1 / 5

2020高中物理选修3-3热学知识点汇总

实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。 r0位置叫做平衡位置,r0的数量级为10-10m。 (1)当r=r0时,F引=F斥,F=0;

(2)当rr0时,F引和F斥都随距离的增大而减小,但F引>F斥,F表现为引力;

(4)当r>10r0(10-9m)时,F引和F斥都已经十分微弱,可以认为分子间没有相互作用力(F=0). 4、温度:宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:T=t+273.15K 5、内能:

①分子势能:分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(r=r0时分子势能最小)

当r>r0时,分子力为引力,当r增大时,分子力做负功,分子势能增加 当r

当r=r0时,分子势能最小,但不为零,为负值,因为选两分子相距无穷远时分子势能为零 ②物体的内能:物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度)

③改变内能的方式:做功与热传递都使物体的内能改变 特别提醒:

(1)物体的体积越大,分子势能不一定就越大,如0 ℃的水结成0 ℃的冰后体积变大,但分子势能却减小了.

(2)理想气体分子间相互作用力为零,故分子势能忽略不计,一定质量的理想气体内能只与温度有关.

(3)内能都是对宏观物体而言的,不存在某个分子的内能的说法. 由物体内部状态决定

第二章 气体的性质

1、分子热运动速率的统计分布规律

(1)气体分子间距较大,分子力可以忽略,因此分子间除碰撞外不受其他力的作用,故气体能充满它能达到的整个空间.

(2)分子做无规则的运动,速率有大有小,且时而变化,大量分子的速率按“中间多,两头少”的规律分布.

(3)温度升高时,速率小的分子数减少,速率大的分子数增加,分子的平均速率将增大(并不是每个分子的速率都增大),但速率分布规律不变.

2 / 5

2020高中物理选修3-3热学知识点汇总

2、气体实验定律:适用条件:压强不太大,温度不太低 ①玻意耳定律:(C为常量)→等温变化

微观解释:一定质量的理想气体,温度保持不变时,分子的平均动能是一定的,在这种情况下,体积减少时,分子的密集程度增大,气体的压强就增大。 图象表达:

②查理定律:(C为常量)→等容变化

微观解释:一定质量的气体,体积保持不变时,分子的密集程度保持不变,在这种情况下,温度升高时,分子的平均动能增大,气体的压强就增大。 图象表达:

③盖吕萨克定律:

(C为常量)→等压变化

微观解释:一定质量的气体,温度升高时,分子的平均动能增大,只有气体的体积同时增大,使分子的密集程度减少,才能保持压强不变 适用条件:压强不太大,温度不太低 图象表达: 3、理想气体 宏观上:严格遵守三个实验定律的气体,实际气体在常温常压下(压强不太大、温度不太低)实验气体可以看成理想气体

微观上:理想气体的分子间除碰撞外无其他作用力,分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间.故一定质量的理想气体的内能只与温度有关,与体积无关(即理想气体的内能只看所用分子动能,没有分子势能) 理想气体状态方程,可包含气体的三个实验定律:

4、气体压强的微观解释: 大量分子频繁的撞击器壁的结果

影响气体压强的因素:①气体的平均分子动能(宏观上即温度)②分子的密集程度即单位体积内的分子数(宏观上即体积)

第三章 物态和物态变化

3 / 5

2020高中物理选修3-3热学知识点汇总

2020高中物理选修3-3热学知识点汇总2020高中物理选修3-3热学知识点汇总第一章分子动理论1、物质是由大量分子组成的(1)单分子油膜法测量分子直径(2)1mol任何物质含有的微粒数相同NA=6.02x1023mol-1(3)对微观量的估算:分子的两种模型:球形和立方体(固体液体通常看
推荐度:
点击下载文档文档为doc格式
0leah9f2gn9acj39qpyw5s23r4b01m00enx
领取福利

微信扫码领取福利

微信扫码分享