层次分析法实例与步骤
下面结合一个具体例子,说明层次分析法的基本步骤和要点。
【案例】
市政工程项目建设决策:层次分析法问题提出
市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
1. 建立递阶层次结构
应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。
AHP要求的递阶层次结构一般由以下三个层次组成: ? 目标层(最高层):指问题的预定目标; ? 准则层(中间层):指影响目标实现的准则; ? 措施层(最低层):指促使目标实现的措施;
通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。
然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。
在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。
最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。
明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。
【案例分析】市政工程项目进行决策:建立递阶层次结构
在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。
为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。
假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。
将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。。。代表不同层次,同一层次从左到右用1、2、3、4。。。代表不同因素。这样构成的递阶层次结构如下图。
page1
目标层A
准则层B
准则层C
措施层D
建高速路(D1) 建地铁(D2) 经济效益(B1) 直接经济效益 (C1) 间接带动效益(C2) 合理建设市政工程,使综合效益最高(A) 社会效益(B2) 方便日常出行(C3) 方便假日出行(C4) 环境效益(B3) 减少环境污染(C5) 改善城市面貌(C6)
图1 递阶层次结构示意图
2. 构造判断矩阵并赋值
根据递阶层次结构就能很容易地构造判断矩阵。
构造判断矩阵的方法是:每一个具有向下隶属关系的元素(被称作准则)作为判断矩阵的第一个元素(位于左上角),隶属于它的各个元素依次排列在其后的第一行和第一列。
重要的是填写判断矩阵。填写判断矩阵的方法有:
大多采取的方法是:向填写人(专家)反复询问:针对判断矩阵的准则,其中两个元素两两比较哪个重要,重要多少,对重要性程度按1-9赋值(重要性标度值见下表)。
表1 重要性标度含义表 重要性标度 含 义 1 表示两个元素相比,具有同等重要性 3 表示两个元素相比,前者比后者稍重要 5 表示两个元素相比,前者比后者明显重要 7 表示两个元素相比,前者比后者强烈重要 9 表示两个元素相比,前者比后者极端重要 2,4,6,8 表示上述判断的中间值 倒数 若元素I与元素j的重要性之比为aij, 则元素j与元素I的重要性之比为aji=1/aij 设填写后的判断矩阵为A=(aij)n×n,判断矩阵具有如下性质: (1) aij〉0 (2) aji=1/ aji (3) aii=1
根据上面性质,判断矩阵具有对称性,因此在填写时,通常先填写aii=1部分,然后再仅需判断及填写上三角形或下三角形的n(n-1)/2个元素就可以了。
在特殊情况下,判断矩阵可以具有传递性,即满足等式:aij*ajk=aik
page2
当上式对判断矩阵所有元素都成立时,则称该判断矩阵为一致性矩阵。
【案例分析】市政工程项目建设决策:构造判断矩阵并请专家填写 接前例,征求专家意见,填写后的判断矩阵如下:
表2 判断矩阵表
A B1 B2 B3 B1 C1 C2 B2 C3 C4 B1 1 1/3 1/3 C1 1 1 C3 1 3 B2 1 1 C2 1 C4 1 B3 1 C1 D1 D2 C2 D1 D2 C3 D1 D2 D1 1 5 D1 1 3 D1 1 1/5 D2 1 D2 1 D2 1 C5 D1 D2 C6 D1 D2 D1 1 1/5 D1 1 1/3 D2 1 D2 1
B3 C5 C6 C5 1 3 C6 1 C4 D1 D2 D1 1 7 D2 1
3. 层次单排序(计算权向量)与检验
对于专家填写后的判断矩阵,利用一定数学方法进行层次排序。
层次单排序是指每一个判断矩阵各因素针对其准则的相对权重,所以本质上是计算权向量。计算权向量有特征根法、和法、根法、幂法等,这里简要介绍和法。
和法的原理是,对于一致性判断矩阵,每一列归一化后就是相应的权重。对于非一致性判断矩阵,每一列归一化后近似其相应的权重,在对这n个列向量求取算术平均值作为最后的权重。具体的公式是:
1nWi??nj?1a?aijnk?1
kl需要注意的是,在层层排序中,要对判断矩阵进行一致性检验。
在特殊情况下,判断矩阵可以具有传递性和一致性。一般情况下,并不要求判断矩阵严格满足这一性质。但从人类认识规律看,一个正确的判断矩阵重要性排序是有一定逻辑规律的,例如若A比B重要,B又比C重要,则从逻辑上讲,A应该比C明显重要,若两两比较时出现A比C重要的结果,则该判断矩阵违反了一致性准则,在逻辑上是不合理的。
因此在实际中要求判断矩阵满足大体上的一致性,需进行一致性检验。只有通过检验,才能说明判断矩阵在逻辑上是合理的,才能继续对结果进行分析。
一致性检验的步骤如下。
第一步,计算一致性指标C.I.(consistency index)
C.I.??max?nn?1
第二步,查表确定相应的平均随机一致性指标R.I.(random index)
据判断矩阵不同阶数查下表,得到平均随机一致性指标R.I.。例如,对于5阶的判断矩阵,查表得到R.I.=1.12
page3