1.1 算法 算法:是解题方案的准确而完整的描述。通俗地说,算法就是计算机解题的过程。算法不等于程序,也不等于计算方法,程序的编制不可能优于算法的设计。 (1)确定性,算法中每一步骤都必须有明确定义,不允许有模棱两可的解释,不允许有多义性;
(2)有穷性,算法必须能在有限的时间内做完,即能在执行有限个步骤后终止; (3)可行性,算法原则上能够精确地执行; (4)拥有足够的情报。
算法效率的度量—算法复杂度:算法时间复杂度和算法空间复杂度。★★★ 算法时间复杂度:指执行算法所需要的计算工作量。即算法执行过程中所需要的基本运算次数。 算法空间复杂度:指执行这个算法所需要的内存空间。
1.2 数据结构的基本概念 数据结构:指相互有关联的数据元素的集合。 数据结构研究的三个方面:
(1)数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构;
(2)在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构; (3)对各种数据结构进行的运算。 线性结构的条件,(一个非空数据结构):
(1)有且只有一个根结点; (2)每一个结点最多有一个前件,也最多有一个后件。 非线性结构:不满足线性结构条件的数据结构。
1.3 线性表及其顺序存储结构 线性表的顺序存储结构具有以下两个基本特点: (1)线性表中所有元素所占的存储空间是连续的;
(2)线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。 顺序表的运算:查找、插入、删除。
1.4线性链表 数据结构中的每一个结点对应于一个存储单元,这种存储单元称为存储结点,简称结点。 结点由两部分组成:
(1) 用于存储数据元素值,称为数据域;
(2) 用于存放指针,称为指针域,用于指向前一个或后一个结点。
在链式存储结构中,存储数据结构的存储空间可以不连续,各数据结点的存储顺序与数据元素之间的逻辑关系可以不一致,而数据元素之间的逻辑关系是由指针域来确定的。 链式存储方式即可用于表示线性结构,也可用于表示非线性结构。 线性链表的基本运算:查找、插入、删除。
1.5栈和队列★★★★
栈:限定在一端进行插入与删除的线性表。
其允许插入与删除的一端称为栈顶,用指针top表示栈顶位置。 不允许插入与删除的另一端称为栈底,用指针bottom表示栈底。
栈按照“先进后出”(FILO)或“后进先出”(LIFO)组织数据,栈具有记忆作用。 栈的存储方式有顺序存储和链式存储。 栈的基本运算:
(1) 入栈运算,在栈顶位置插入元素;
(2) 退栈运算,删除元素(取出栈顶元素并赋给一个指定的变量); (3) 读栈顶元素,将栈顶元素赋给一个指定的变量,此时指针无变化。 队列:指允许在一端(队尾)进入插入,而在另一端(队头)进行删除的线性表。
用rear指针指向队尾,用front指针指向队头元素的前一个位置。 队列是“先进先出”(FIFO)或“后进后出”(LILO)的线性表。 队列运算:
(1) 入队运算:从队尾插入一个元素; (2) 退队运算:从队头删除一个元素; 计算循环队列的元素个数:
“尾指针减头指针”,若为负数,再加其容量即可。 即:
当 尾指针-头指针>0 时,尾指针-头指针 当 尾指针-头指针<0 时,尾指针-头指针+容量 计算栈的个数: 栈底 –栈顶 +1
1.6 树与二叉树 ★★★★★ 1、树的基本概念
树是一种简单的非线性结构,其所有元素之间具有明显的层次特性。 在树结构中,每一个结点只有一个前件,称为父结点。 没有前件的结点只有一个,称为树的根结点,简称树的根。
每一个结点可以有多个后件,称为该结点的子结点。没有后件的结点称为叶子结点。 在树结构中,一个结点所拥有的后件的个数称为该结点的度。 来源:考试大 所有结点中最大的度称为树的度。 树的最大层次称为树的深度。
2、二叉树及其基本性质
满足下列两个特点的树,即为二叉树 (1) 非空二叉树只有一个根结点;
(2) 每一个结点最多有两棵子树,且分别称为该结点的左子树与右子树。
的第k层上,最多有
二叉树基本性质:★★★★ 性质1 在二叉树
个结点。性质2 深度为m的二叉树最多有个
个结
点。性质3 在任意一棵二叉树中,度数为0的结点(即叶子结点)总比度为2的结点多一个。 性质4 具有n个结点的二叉树,其深度至少为
,其中
表示取
的整数部分 3、满二叉树与完全二叉树 满二叉树:除最后一层外,每一
层上的所有结点都有两个子结点。
完全二叉树:除最后一层外,每一层上的结点数均达到最大值;在最后一层上只缺少右边的若干结点。 下图a表示的是满二叉树,下图b表示的是完全二叉树:
4、二叉树的遍历 ★★★★ 二叉树的遍历是指不重复地访问二叉树中的所有结点。二叉树的遍历可以分为以下三种: (1)前序遍历(DLR):若二叉树为空,则结束返回。否则:首先访问根结点,然后遍历左子树,最后遍历右子树;并且,在遍历左右子树时,仍然先访问根结点,然后遍历左子树,最后遍历右子树。 (2)中序遍历(LDR):若二叉树为空,则结束返回。否则:首先遍历左子树,然后访问根结点,最后遍历右子树;并且,在遍历左、右子树时,仍然先遍历左子树,然后访问根结点,最后遍历右子树。 (3)后序遍历(LRD):若二叉树为空,则结束返回。否则:首先遍历左子树,然后遍历右子树,最后访问根结点,并且,在遍历左、右子树时,仍然先遍历左子树,然后遍历右子树,最后访问
根结点. 该二叉树前序遍历为:F C A D B E G H P
该二叉树中序遍历为:A C B D F E H G P 该二叉树后序遍历为:A B D C H P G E F 1.7 查找技术 查找:根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素。 查找结果:(查找成功:找到;查找不成功:没找到。) 平均查找长度:查找过程中关键字和给定值比较的平均次数。 查找分为: 顺序查找 二分法查找对于长度为n的有序线性表,最坏情况只需比较
次,而顺序查找需要比较n次。1.8 排序
技术 排序是指将一个无序序列整理成按值非递减顺序排列的有序序列。 1、交
换类排序法(冒泡排序,快速排序) 2、插入类排序法(简单插入排序,希尔排序) 3、选择类排序法(简单选择排序,堆排序) 冒泡排序法,快速排序法,简单插入排序法,简单选择排序法,最坏需要比较的次数为n(n-1)/2 希尔排序,最坏需要比较的次数为
堆排序,最坏需要比较的次数为
2011年全国计算机等级考试二级公共基础知识总结:第二章 2.1 程序设计设计方法和风格 \清晰第一、效率第二\已成为当今主导的程序设计风格。 形成良好的程序设计风格需注意: 1、源程序文档化;
2、数据说明的方法; 3、语句的结构; 4、输入和输出。
注释分序言性注释和功能性注释。 语句结构清晰第一、效率第二。 2.2 结构化程序设计 结构化程序设计方法的四条原则是: 1、自顶向下; 2、逐步求精; 3、模块化;
4、限制使用goto语句。 结构化程序的基本结构及特点:
(1)顺序结构:一种简单的程序设计,最基本、最常用的结构;
(2)选择结构:又称分支结构,包括简单选择和多分支选择结构,可根据条件,判断应该选择哪一条分支来执行相应的语句序列;
(3)循环结构:又称重复结构,可根据给定条件,判断是否需要重复执行某一相同或类似的程序段。
结构化程序设计的特点:只有一个入口和出口 2.3 面向对象的程序设计 面向对象方法的优点: (1)与人类习惯的思维方法一致; (2)稳定性好; (3)可重用性好;
(4)易于开发大型软件产品; (5)可维护性好。
对象是面向对象方法中最基本的概念,可以用来表示客观世界中的任何实体,对象是实体的抽象。
面向对象的程序设计方法中,对象是由数据的容许的操作组成的封装体,是系统中用来描述客观事物的一个实体,是构成系统的一个基本单位,由一组表示其静态特征的属性和它可执行的一组操作组成。
操作描述了对象执行的功能,是对象的动态属性,操作也称为方法或服务。 对象的基本特点: (1)标识惟一性; (2)分类性; (3)多态性; (4)封装性; (5)模块独立性好。
类是指具有共同属性、共同方法的对象的集合。类是关于对象性质的描述。类是对象的抽象,对象是其对应类的一个实例。
消息是一个实例与另一个实例之间传递的信息。对象间的通信靠消息传递。它请求对象执行某一处理或回答某一要求的信息,它统一了数据流和控制流。