好文档 - 专业文书写作范文服务资料分享网站

线性代数复习题

天下 分享 时间: 加入收藏 我要投稿 点赞

线性代数(经管类)试题答案

课程代码:04184

一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A为3阶方阵,且|A|?2,则|2A?1|?( D ) A.-4

B.-1

C.1

D.4

|2A?1|?23|A|?1?8?1?4. 2?12??123???2.设矩阵A=(1,2),B=?,C=则下列矩阵运算中有意义的是( B ) ?34??456??,????A.ACB

B.ABC

C.BAC

D.CBA

3.设A为任意n阶矩阵,下列矩阵中为反对称矩阵的是( B ) A.A+AT

B.A-AT

C.AAT

D.ATA

(A?AT)T?AT?(AT)T?AT?A??(A?AT),所以A-AT为反对称矩阵. ?a 4.设2阶矩阵A=??c?b??,则A*=( A ) ?d??dA.???c??b?? a??

??dB.??b?c?? ?a????dC.??c?b?? ?a???dD.???b??c?? a???33?5.矩阵???10??的逆矩阵是( C )

???0?1?A.??33??

??

?0?3?B.??13??

??

?0C.?1??3?1?? 1??

1??1?? D.3???10?????10?10???6.设矩阵A=?0?234?,则A中( D )

?0005???A.所有2阶子式都不为零 C.所有3阶子式都不为零

B.所有2阶子式都为零 D.存在一个3阶子式不为零

7.设A为m×n矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是( A ) A.A的列向量组线性相关 C.A的行向量组线性相关

B.A的列向量组线性无关 D.A的行向量组线性无关

Ax=0有非零解?r(A)?n? A的列向量组线性相关. 8.设3元非齐次线性方程组Ax=b的两个解为??(1,0,2)T,??(1,?1,3)T,且系数矩阵A的秩r(A)=2,则对于任意常数k, k1, k2,方程组的通解可表为( C ) A.k1(1,0,2)T+k2(1,-1,3)T C.(1,0,2)T+k (0,1,-1)T

B.(1,0,2)T+k (1,-1,3)T D.(1,0,2)T+k (2,-1,5)T

??(1,0,2)T是Ax=b的特解,????(0,1,?1)T是Ax=0的基础解系,所以Ax=b的通解可表为??k(???)?(1,0,2)T+k (0,1,-1)T. ?111???9.矩阵A=?111?的非零特征值为( B )

?111???A.4

B.3

C.2

D.1

??1|?E?A|??1?1?1?1??3??3??3111??1?1??1??1?1?(??3)?1??1?1 ?1??1?1?1??1?1?1??1111?(??3)0?0??2(??3),非零特征值为??3. 00?2?2x1x2?2x1x3?2x1x4的秩为( C ) 10.4元二次型f(x1,x2,x3,x4)?x1A.4 B.3 C.2 D.1

?1??1A??1??1?100010001??0??0??1?0??0???0???0100010001??1??0??0?0??0???0???0010001000??1?,秩为2. 0??0??二、填空题(本大题共10小题,每小题2分,共20分)

a1b111.若aibi?0,i?1,2,3,则行列式a2b1a1b2a2b2a3b2a1b3a2b3=__0__. a3b3a3b1行成比例值为零. ?12?T

12.设矩阵A=??34??,则行列式|AA|=__4__.

??

12|AA|?|A||A|?|A|?34TT22?(?2)2?4. ?a11x1?a12x2?a13x3?0?13.若齐次线性方程组?a21x1?a22x2?a23x3?0有非零解,则其系数行列式的值为__0__.

?ax?ax?ax?0322333?311?101?

??

14.设矩阵A=?020?,矩阵B?A?E,则矩阵B的秩r(B)= __2__.

?001????001???B?A?E=?010?,r(B)=2. ?000???15.向量空间V={x=(x1,x2,0)|x1,x2为实数}的维数为__2__.

16.设向量??(1,2,3),??(3,2,1),则向量?,?的内积(?,?)=__10__.

17.设A是4×3矩阵,若齐次线性方程组Ax=0只有零解,则矩阵A的秩r(A)= __3__. 18.已知某个3元非齐次线性方程组Ax=b的增广矩阵A经初等行变换化为:

3?1??1?2??A??02?12?,若方程组无解,则a的取值为__0__.

?00a(a?1)a?1???a?0时,r(A)?2,r(A)?3. 19.设3元实二次型f(x1,x2,x3)的秩为3,正惯性指数为2,则此二次型的规范形是

22y12?y2?y3.

22?y3秩r?3,正惯性指数k?2,则负惯性指数r?k?3?2?1.规范形是y12?y2. 10??1??20.设矩阵A=?12?a0?为正定矩阵,则a的取值范围是a?1.

?003???11011?1?a?0,?3?12?a0?3(1?a)?0?a?1. ?1?1?0,?2?12?a003

三、计算题(本大题共6小题,每小题9分,共54分)

12323321.计算3阶行列式249499.

367677123233100203解:249499?200409?0.

367677300607?101???22.设A=?210? ,求A?1.

??32?5????101100????解:?210010? ??32?5001????101??01?2?02?2?100????210? 301???101??01?2?002?100?? ?210? 7?21??200??202?200?52?1??100???????01?2?210? ??0105?11? ??010?002?0027?21??0017?21????????5/21?1/2?????5?11?. ?7/2?11/2????5/21?1/2??, 5?11? 7/2?11/2??A?123.设向量组?1(1,?1,2,1)T,?2(2,?2,4,?2)T,?3(3,0,6,?1)T,?4(0,3,0,?4)T. (1)求向量组的一个极大线性无关组;

(2)将其余向量表为该极大线性无关组的线性组合.

230?30??1?12????3?33???1?20?00?解:(?1,?2,?3,?4)?? ?002460?00??????1?2?1?4??0?4?4?4?????30??12?12

???0?4?4?4???01????000033?????00??0000???

30??12??11??01??0011????0000???0?3??10??00??01??0011????0000???0?3??00?.

11??00??(1)?1,?2,?3是一个极大线性无关组;(2)?4??3?1?0?2??3.

?x5?0?x1?x2     ?24.求齐次线性方程组 ?x1?x2?x3     ?0的基础解系及通解.

?    x?x?x?0345?

?11001??11001??11001???????解:A??11?100???00?10?1???00?10?1?

?00111??00111??00010????????x1??x2?x5??1???1??????x?x11001???2?1??0?2?????00101?,?x3??x5, 基础解系为?0?,??1?,通解为

?????00010??x?0?0??0????4?????x5?0??1??x5???k1(?1,1,0,0,0)T?k2(?1,0,?1,0,1)T.

?12??125.设矩阵A=??21??,求正交矩阵P,使PAP为对角矩阵.

??解:|?E?A|???1?2?2?(??1)2?4??2?2??3?(??1)(??3),特征值?1??1,??1?2?3.

对于?1??1,解齐次线性方程组(?E?A)x?0:

?E?A????x1??x2??2?2??11???1????????,,基础解系为 ?1??00??1??,单位化为 ?2?2x?x??????2?2?1????11??1??2?; ???1??1????|?1|2?1??1????2?对于?2?3,解齐次线性方程组(?E?A)x?0:

?E?A????x1?x2?2?2??1?1??1?????????,,基础解系为 ?2??,单位化为 ???1?2200x?x??????2?2?1???11?1??2???2??2??1????1?. |?2|2?????2?1??1????10?22?,则P是正交矩阵,使P?1AP???令P???03??. 1??1????2??2

线性代数复习题

线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A为3阶方阵,且|A|?2,则|2A?1|?(D)A.-4B.-1C.1<
推荐度:
点击下载文档文档为doc格式
0jzhb4tt0e3xy6q955p40ne2d1fovz0144i
领取福利

微信扫码领取福利

微信扫码分享