2011 The Polypyrimidine Tract-Binding Protein Affects Coronavirus RNA Accumulation Levels
5146SOLAETAL.J.VIROL.
FIG.10.InductionofstressgranulesinSTcells.STcellswereexposedtodifferentstressconditions:(i)oxidativestressinducedby1mMsodiumarsenitefor60min,(ii)PKRactivationby4?gpoly(I:C)for6h,or(iii)ERstressinducedby2?Mthapsigarginfor1.5h.ThepresenceofPTB(red)andTIAR(green)proteinsinmock-treatedorstressedSTcellswasanalyzedbyconfocalmicroscopywithspeci?cantibodies.
theamountofcellularmRNAhnRNPUwasnotsigni?cantlytranscriptioncomplexesresponsibleforviralRNAsynthesis.increasedincytoplasmicextractsbyimmunoprecipitationwithOthercellularRNA-bindingproteins,suchasthestressgran-anti-PTBoranti-TIARantibodies(datanotshown).TheseulemarkersTIA-1andTIAR,colocalizedwithPTBincyto-resultsindicatedthatduringinfection,viralgRNAandplasmicstructures.Incontrast,SGsinducedinSTcellsbysgmRNAwereassociatedwithPTBandTIARincytoplasmicoxidativestresscontainedTIARbutdidnotincludesigni?cantRNA-proteincomplexesandprobablyregulateviralRNAandlevelsofPTB,suggestingthatPTBisaspeci?ccomponentofproteinsynthesisduringviralinfection.
cytoplasmicgranulesinducedbyTGEVinfection.Interest-ingly,virusgRNAandsgmRNAweredetectedinRNAimmu-DISCUSSION
noprecipitationassaysinassociationwithPTBandTIAR,indicatingthatPTBandTIARwerecomponentsofribo-Thispaperreportsontheidenti?cationofPTBasacellularnucleoproteincomplexesinducedbyTGEVinfectionandthatproteindirectlyorindirectlybindingtoCoVTRSsandana-thosecomplexesincludedviralRNAs.
lyzesPTBintracellularinteractionsduringTGEVinfection.DuringinfectionbyTGEV,amemberofCoVgenus?,theFunctionalexperimentsshowedthatPTBhadanegativeeffectbindingofPTBtoviralRNAsequencesinvolvedintranscrip-onviralRNAaccumulationandvirusproduction,assilencingtion,suchasTRS-LandseveralTRS-Bs,hasbeenshown.ofPTBexpressionwithspeci?csiRNAsinthehumanHuh7TheseresultsareinlinewiththosedescribedforMHV,acelllineledtoareproducibleandsigni?cantincrease(uptomemberofCoVgenus?,inwhichPTBbindstotheleader4-fold)inviralmRNA7levelsandinvirustiters(3.5-fold)inTRSandalsotothecomplementofthe3?UTR(30,44).Usingrelationtothoseforcellstransfectedwiththenegative-controlfunctionalstudies,wehaveshownthatPTB-speci?csilencingsiRNA.ApossibleeffectofPTBonviralmRNAstabilityduringTGEVinfectionledtoincreasesinRNAlevelsandcannotbeexcluded.Inaddition,therewasaninversecorrela-virusinfectivity.Theseresultsareconsistentwiththeprevi-tionbetweenPTBcytoplasmiclevelsandRNAaccumulation.ouslyreporteddecreaseinMHVRNAsynthesissubsequenttoFurthermore,PTBsilencinginhumanHEK293Tcellstrans-PTBoverexpression(15).SincePTBoverexpressioncausedanfectedwithaTGEV-derivedrepliconalsoledtoasimilarunexpectedinhibitoryeffectonviralRNAsynthesis,theseau-increaseinviralmRNA7,con?rmingthenegativeeffectofthorshypothesizedthattheexcessofPTBwoulddepleteotherPTBonviralRNAaccumulation.AfterTGEVinfection,PTBessentialfactors,indirectlyaffectingMHVreplicationandrelocalizedfromthenucleustodiscrete,temporallyregulated,transcription,butnoexperimentalevidencesupportingthiscytoplasmicgranules.ThesePTB-containinggranulesaccumu-hypothesiswasprovided.PTBhasbeenassociatedwithotherlatedinthecytoplasmofinfectedcellsatthesametimethatsingle-strandedpositive-senseRNAviruses.InhepatitisCvi-activeviralRNAsynthesisdecreased.Inlinewiththisobser-rus(HCV)andpicornaviruses,PTBfunctionsasanIRESvation,nocolocalizationbetweenPTBincytoplasmicgranulestrans-actingfactor,activatingviraltranslationinitiation(34,anddsRNAorthereplicasecomponentnsp8wasobserved,49).However,theroleofPTBinRNAreplicationofpositive-indicatingthatPTBwasnotaccumulatedinactivereplication-senseRNAvirusesisstillcontroversial.InHCV,ithasbeen
Downloaded from http://jvi.asm.org/ on April 12, 2015 by UNIV OF CONNECTICUTVOL.85,2011PTBAFFECTSCORONAVIRUSRNALEVELS5147
FIG.11.PresenceofPTBincytoplasmicgranulesinducedbyTGEVinfectioninHuh7cells.Huh7cellswereinfectedwiththeTGEVPUR46-C11strain(MOI,20).ThepresenceofPTB(red)andTIAR(green)inmock-infectedandinfectedHuh7cellsat48and72hpiwasanalyzedbyconfocalmicroscopyusingspeci?cantibodies.
reportedthatPTBispartoftheRNAreplicationcomplexandparticipatesinviralRNAsynthesis(2).Incontrastwiththeseresults,ithasalsobeenreportedthatPTBpartiallyrepressesHCVreplicationandinhibitsbindingofRdRptothe3?UTR(21).Indenguevirus,PTBhasbeenshowntobeinvolvedexclusivelywiththevirusreplicationmachinery(8)andinreplicationortranslation(1).Insummary,theactivityofPTBinthereplicationofCoVsseemstofollowauniformeffectofreducingviralRNAlevels,whichisvariableinthereplicationofotherpositive-senseRNAviruses.
Inthispaper,wereportPTBredistributiontocytoplasmicstructuresduringTGEVinfectionandthatviralRNAs(gRNAandsgmRNA)wereassociatedwithPTBwithinthesenovelcytoplasmicstructurespotentiallyderivedfromSGs.Incon-FIG.12.RNAimmunoprecipitationofviralRNAswithspeci?canti-trast,nucleus-to-cytoplasmrelocalizationofPTBduringMHVPTBoranti-TIARantibodies.STcellswereeithernoninfected(?)orinfectionwasnotdescribed(15).DuringTGEVinfectionofSTinfected(?)withtheTGEVPUR46-MADstrain(MOI,10).Cytoplas-cells,PTB,TIA-1,andTIARwereidenti?edintemporallymicextractswerepreparedat16hpi.RNA-proteincomplexeswereim-munoprecipitatedintheabsenceofantibodies(NoAb)orthepresenceofregulatedcytoplasmicgranulesdirectlyorindirectlyassociatedanti-PTB(?-PTB)oranti-TIAR(?-???R)antibodiesorthenegative-withvirusRNAs.Furthermore,TGEVinfectionofhumancontrolantibodyanti-GFP(?-GFP).RNAselutedfromimmunoprecipi-Huh7cellsalsoledtotheformationofcytoplasmicgranulestatedRNA-proteincomplexeswereanalyzedbyqRT-PCRforthepres-containingPTBandTIAR,similartothosedetectedinporcineenceofassociatedviralgenomicRNA(g)orsubgenomicmRNA7(sg).TheamountofviralRNAsinimmunoprecipitatedribonucleoproteinSTcells.AlthoughSGsformedinresponsetodifferentstresscomplexeswasexpressedinrelationtoRNAlevelsintheabsenceofconditionssharemanycommonfactors,somecomponentsareantibody.Quanti?cationswerefromthreeindependentRNAimmuno-uniquetoaparticularstress(39).TIARisacommoncompo-precipitationassays.Errorbarsindicatethestandarddeviations.
nentofSGsinducedinSTcellsbyTGEVinfectionandoxi-
Downloaded from http://jvi.asm.org/ on April 12, 2015 by UNIV OF CONNECTICUT5148SOLAETAL.dativestress,whereasPTBisaccumulatedtosigni?cantlevelsonlyinTGEV-inducedSGs.TheseresultsindicatethatPTBmightbeauniquemarkerofcytoplasmicgranulesformedinSTcellsduringTGEVinfection.
PTB,TIA-1,andTIARareRNA-bindingproteinsassoci-atedwithRNAmetabolismeventsinthenucleusandthecytoplasm(9,37).Inthenucleus,PTBactsasaregulatorrepressingalternativesplicing(12,33),possiblybyinterferingwithmolecularinteractionsbetweenproteincomplexesthatmediateexonde?nition(10,33)or,alternatively,byprecludingtheassociationofsplicingfactors(17,64,68).Also,TIA-1andTIARfunctioninthenucleusassplicingregulators(27,43).Inthecytoplasm,inresponsetoenvironmentalstress,TIA-1andTIARcontributetotranslationalarrest,polysomedisassembly,andaggregationofnontranslatedpolyadenylatedmRNAstoformSGs(6).Ourpaperdescribesforthe?rsttimethatduringTGEVinfection,PTBisassociatedwithcytoplasmicstruc-tures,includingtheSGmarkersTIA-1andTIAR(38).ThesestructuresaredifferentiablefromconventionalSGsbythepresenceofPTB.Onepossibilityisthatthesestructuresmightbemodi?edstressgranulescontainingRNPcomplexesin-ducedbyTGEVinfection.ThebindingofPTBtoviralRNAmaypromoteRNA-RNAorRNA-proteininteractionsre-quiredfortheassemblyoftheseRNPcomplexes.Atthesametime,TIA-1andTIAR,de?nedtobeSGnucleators(7),mightcontributetoconcentrateviralRNAsandcellularRNA-bind-ingproteinsincytoplasmicsubdomains.Infact,TIA-1andTIARtogetherwithPTBhaverecentlybeenshowntobeinvolvedintheposttranscriptionalregulationof?-F1ATPasemRNAexpressionatthetranslationlevel,mediatedbyitsspeci?cbindingtothe3?UTRofthismRNA(32,56).IthasbeenproposedthatPTBmayenhance(56)orrepress(11)translationofspeci?ccellularmRNAs,dependingonthecel-lularcontextandonthebindingofotherregulatorytrans-actingfactors(9).
Inrecentyears,thesubcellularlocalizationofmRNAsinribonucleoproteincomplexeshasbeendemonstratedtobeapowerfulmechanismtospatiallyandtemporallyregulatevar-iousRNAprocessingeventsinthecell(29).PTBhasbeenrevealedtobeakeystructuralcomponentofRNPparticlesinvolvedinregulatingthespatiotemporalpatternofgeneex-pressionduringthedevelopmentofeukaryoticorganisms(11).Accordingly,inthecontextofTGEVinfection,PTBmight(i)inhibitviralRNAaccumulation,possiblybyinterferingwithessentiallong-distanceRNA-RNAandRNA-proteininterac-tionsestablishedthroughoutthegenomeduringdiscontinuoustranscriptionbetweenTRS-LandTRS-B,aspreviouslyde-scribedinourCoVtranscriptionmodel(63,69),and(ii)sub-sequently,atlatertimespostinfection,PTBcouldrelocalizeandconcentratetogetherwithviralRNAsatcytoplasmicRNPcomplexesdifferentfromreplication-transcriptionsites,in-cludingTIA-1andTIAR,wheretranslationorotherposttran-scriptionalprocessesproceed.Sincethesecytoplasmicstruc-turesincludednotonlySGmarkersbutalsoPTBandviralRNAs,theycouldbenamedmodi?edSGs.ThetwoproposedactivitiesforPTBinthecontextofTGEVreplication,repres-sionoftemplateswitchandrelocalizationwithviralRNAstomodi?edSGs,mimicthedualcellularfunctionofPTB(11,59)asasplicingrepressorinthenucleus(12)andaregulatorofcytoplasmicmRNAstability,localization(18),andtranslation
J.VIROL.
(11,56),respectively.Therefore,PTBmightbeoneofthefactorsinvolvedinthetransitionofviralRNAsfromtranscrip-tiontoasubsequentstageintheviralcycle.Thatbeingthecase,thecytoplasmicgranulesobservedafterTGEVinfectionmightcontributetothespatiotemporalregulationofviralRNAstoenterdifferentsteps,includingtranslationorencap-sidation.Alternatively,cytoplasmicgranulesmightfunctiontolimitviralinfectionaspartofthehostresponsebyreducingviralRNAstabilityandsubsequentlyrepressingtranslationofviralmRNAs.
Inthispaper,weprovideevidenceforchangesinducedincellRNA-bindingproteinsassociatedwithmRNAmetabo-lism.ThesechangescreatedynamiccytoplasmicdomainsinwhichTIA-1andTIARaccumulateinmodi?edcytoplasmicgranuleswithPTB,inassociationwithviralRNAs.Inaddition,wehaveshownthatviralinfectioninterferedwithP-bodyfor-mation.KnowledgeoftheinteractionsbetweenviralRNAandcellularproteinswillenableustounderstandthemolecularbasisofviralpathogenesisandtodevelopbettertherapeuticstrategiestointerferewithvirusreplication.
ACKNOWLEDGMENTS
ThisworkwassupportedbygrantsfromtheMinistryofScienceandInnovationofSpain(BIO2007-60978andPET2008-0310),theCom-munityofMadrid,Spain(S-SAL-0185-2006),theU.S.NationalInsti-tutesofHealth(ARRA-W000151845),andP?zerAnimalHealth.TheresearchleadingtotheseresultshasreceivedfundingfromtheEuro-peanCommunity’s(EC’s)SeventhFrameworkProgramme(FP7/2007-2013)undertheprojectsEMPERIE(ECgrantagreementnumber223498)andPoRRSCon(ECgrantagreementnumber245141).I.S.receivedacontractsupportedbygrantsfromtheMinistryofScienceandInnovationofSpain(BIO2007-60978).
WegratefullyacknowledgeJ.Lykke-AndersonandJ.ZiebuhrforprovidingtheindicatedantibodiesandM.Gonza′lezfortechnicalas-sistance.
REFERENCES
1.Agis-Juarez,R.A.,etal.2009.Polypyrimidinetract-bindingproteinisrelo-catedtothecytoplasmandisrequiredduringdenguevirusinfectioninVero
cells.J.Gen.Virol.90:2893–2901.
2.Aizaki,H.,K.S.Choi,M.Liu,Y.J.Li,andM.M.Lai.2006.Polypyrimidine-tract-bindingproteinisacomponentoftheHCVRNAreplicationcomplexandnecessaryforRNAsynthesis.J.Biomed.Sci.13:469–480.
3.Almazan,F.,C.Galan,andL.Enjuanes.2004.Thenucleoproteinisrequiredforef?cientcoronavirusgenomereplication.J.Virol.78:12683–12688.
4.Almazan,F.,etal.2000.EngineeringthelargestRNAvirusgenomeasaninfectiousbacterialarti?cialchromosome.Proc.Natl.Acad.Sci.U.S.A.97:5516–5521.
5.Anderson,P.,andN.Kedersha.2006.RNAgranules.J.CellBiol.172:803–808.
6.Anderson,P.,andN.Kedersha.2009.RNAgranules:post-transcriptionalandepigeneticmodulatorsofgeneexpression.Nat.Rev.Mol.CellBiol.10:430–436.
7.Anderson,P.,andN.Kedersha.2008.Stressgranules:theTaoofRNAtriage.TrendsBiochem.Sci.33:141–150.
8.Anwar,A.,K.M.Leong,M.L.Ng,J.J.Chu,andM.A.Garcia-Blanco.2009.Thepolypyrimidinetract-bindingproteinisrequiredforef?cientdengueviruspropagationandassociateswiththeviralreplicationmachinery.J.Biol.Chem.284:17021–17029.
9.Beckham,C.J.,andR.Parker.2008.Pbodies,stressgranules,andvirallifecycles.CellHostMicrobe3:206–212.
10.Berget,S.M.1995.Exonrecognitioninvertebratesplicing.J.Biol.Chem.
270:2411–2414.
11.Besse,F.,S.LopezdeQuinto,V.Marchand,A.Trucco,andA.Ephrussi.
2009.DrosophilaPTBpromotesformationofhigh-orderRNPparticlesandrepressesoskartranslation.GenesDev.23:195–207.
12.Black,D.L.2003.Mechanismsofalternativepre-messengerRNAsplicing.
Annu.Rev.Biochem.72:291–336.
13.Bost,A.G.,R.H.Carnahan,X.T.Lu,andM.R.Denison.2000.Four
proteinsprocessedfromthereplicasegenepolyproteinofmousehepatitisviruscolocalizeinthecellperipheryandadjacenttositesofvirionassembly.J.Virol.74:3379–3387.
Downloaded from http://jvi.asm.org/ on April 12, 2015 by UNIV OF CONNECTICUTVOL.85,2011
14.Bost,A.G.,E.Prentice,andM.R.Denison.2001.Mousehepatitisvirus
replicaseproteincomplexesaretranslocatedtositesofMproteinaccumu-lationintheERGICatlatetimesofinfection.Virology285:21–29.
15.Choi,K.S.,P.Huang,andM.M.Lai.2002.Polypyrimidine-tract-binding
proteinaffectstranscriptionbutnottranslationofmousehepatitisvirusRNA.Virology303:58–68.
16.Choi,K.S.,A.Mizutani,andM.M.Lai.2004.SYNCRIP,amemberofthe
heterogeneousnuclearribonucleoproteinfamily,isinvolvedinmousehep-atitisvirusRNAsynthesis.J.Virol.78:13153–13162.
17.Chou,M.Y.,J.G.Underwood,J.Nikolic,M.H.Luu,andD.L.Black.2000.
MultisiteRNAbindingandreleaseofpolypyrimidinetractbindingproteinduringtheregulationofc-srcneural-speci?csplicing.Mol.Cell5:949–957.18.Cote,C.A.,etal.1999.AXenopusproteinrelatedtohnRNPIhasarolein
cytoplasmicRNAlocalization.Mol.Cell4:431–437.
19.deGroot,R.J.,etal.2008.RevisionofthefamilyCoronaviridae.Report
2008.085-126V.InternationalCommitteeonTaxonomyofVirusesLondon,UnitedKingdom.
20.Dominguez,S.R.,T.J.O’Shea,L.M.Oko,andK.V.Holmes.2007.Detec-tionofgroup1coronavirusesinbatsinNorthAmerica.Emerg.Infect.Dis.13:1295–1300.
21.Domitrovich,A.M.,K.W.Diebel,N.Ali,S.Sarker,andA.Siddiqui.2005.
RoleofLaautoantigenandpolypyrimidinetract-bindingproteininHCVreplication.Virology335:72–86.
22.Drosten,C.,etal.2003.Identi?cationofanovelcoronavirusinpatientswith
severeacuterespiratorysyndrome.N.Engl.J.Med.348:1967–1976.
23.Eleouet,J.F.,etal.2000.Theviralnucleocapsidproteinoftransmissible
gastroenteritiscoronavirus(TGEV)iscleavedbycaspase-6and-7duringTGEV-inducedapoptosis.J.Virol.74:3975–3983.
24.Enjuanes,L.,F.Almazan,I.Sola,andS.Zuniga.2006.Biochemicalaspects
ofcoronavirusreplicationandvirus-hostinteraction.Annu.Rev.Microbiol.60:211–230.
25.Enjuanes,L.,etal.2008.TheNidovirales,p.419–430.InB.W.J.Mahy,M.
VanRegenmortel,P.Walker,andD.Majumder-Russell(ed.),Encyclopediaofvirology,3rded.ElsevierLtd.,Oxford,UnitedKingdom.
26.Enjuanes,L.,W.Spaan,E.Snijder,andD.Cavanagh.2000.Nidovirales,p.
827–834.InM.H.V.vanRegenmortel,etal.(ed.),Virustaxonomy.Clas-si?cationandnomenclatureofviruses.AcademicPress,SanDiego,CA.27.Forch,P.,O.Puig,C.Martinez,B.Seraphin,andJ.Valcarcel.2002.The
splicingregulatorTIA-1interactswithU1-CtopromoteU1snRNPrecruit-mentto5?splicesites.EMBOJ.21:6882–6892.
28.Galan,C.,etal.2009.Hostcellproteinsinteractingwiththe3?endofTGEV
coronavirusgenomein?uencevirusreplication.Virology391:304–314.
29.Glisovic,T.,J.L.Bachorik,J.Yong,andG.Dreyfuss.2008.RNA-binding
proteinsandpost-transcriptionalgeneregulation.FEBSLett.582:1977–1986.
30.Huang,P.,andM.M.C.Lai.1999.Polypyrimidinetract-bindingprotein
bindstothecomplementarystrandofthemousehepatitisvirus3?untrans-latedregion,therebyalteringRNAconformation.J.Virol.73:9110–9116.31.Imbert,I.,etal.2006.Asecond,non-canonicalRNA-dependentRNApoly-meraseinSARScoronavirus.EMBOJ.25:4933–4942.
32.Izquierdo,J.M.2006.ControloftheATPsynthasebetasubunitexpression
byRNA-bindingproteinsTIA-1,TIAR,andHuR.Biochem.Biophys.Res.Commun.348:703–711.
33.Izquierdo,J.M.,etal.2005.RegulationofFasalternativesplicingbyan-tagonisticeffectsofTIA-1andPTBonexonde?nition.Mol.Cell19:475–484.34.Jang,S.K.2006.Internalinitiation:IRESelementsofpicornavirusesand
hepatitisCvirus.VirusRes.119:2–15.35.Jime′nez,G.,I.Correa,M.P.Melgosa,M.J.Bullido,andL.Enjuanes.1986.
Criticalepitopesintransmissiblegastroenteritisvirusneutralization.J.Virol.60:131–139.
36.Kedersha,N.,andP.Anderson.2007.Mammalianstressgranulesandpro-cessingbodies.MethodsEnzymol.431:61–81.
37.Kedersha,N.,andP.Anderson.2002.Stressgranules:sitesofmRNAtriage
thatregulatemRNAstabilityandtranslatability.Biochem.Soc.Trans.30:963–969.
38.Kedersha,N.,etal.2005.Stressgranulesandprocessingbodiesaredynam-icallylinkedsitesofmRNPremodeling.J.CellBiol.169:871–884.
39.Kedersha,N.L.,M.Gupta,W.Li,I.Miller,andP.Anderson.1999.RNA-bindingproteinsTIA-1andTIARlinkthephosphorylationofeIF-2alphatotheassemblyofmammalianstressgranules.J.CellBiol.147:1431–1442.40.Knoops,K.,etal.2008.SARS-coronavirusreplicationissupportedbya
reticulovesicularnetworkofmodi?edendoplasmicreticulum.PLoSBiol.6:e226.
41.Kosinski,P.A.,J.Laughlin,K.Singh,andL.R.Covey.2003.Acomplex
containingpolypyrimidinetract-bindingproteinisinvolvedinregulatingthestabilityofCD40ligand(CD154)mRNA.J.Immunol.170:979–988.
42.Lau,S.K.,etal.2005.Severeacuterespiratorysyndromecoronavirus-like
virusinChinesehorseshoebats.Proc.Natl.Acad.Sci.U.S.A.102:14040–14045.
43.LeGuiner,C.,etal.2001.TIA-1andTIARactivatesplicingofalternative
PTBAFFECTSCORONAVIRUSRNALEVELS5149
exonswithweak5?splicesitesfollowedbyaU-richstretchontheirownpre-mRNAs.J.Biol.Chem.276:40638–40646.
44.Li,H.P.,P.Huang,S.Park,andM.M.C.Lai.1999.Polypyrimidinetract-bindingproteinbindstotheleaderRNAofmousehepatitisvirusandservesasaregulatorofviraltranscription.J.Virol.73:772–777.
45.
Li,H.P.,X.Zhang,R.Duncan,L.Comai,andM.M.C.Lai.1997.Heter-ogeneousnuclearribonucleoproteinA1bindstothetranscription-regulatoryregionofmousehepatitisvirusRNA.Proc.Natl.Acad.Sci.U.S.A.94:9544–9549.
46.Li,W.,etal.2005.BatsarenaturalreservoirsofSARS-likecoronaviruses.Science310:676–679.
47.Ma,S.,G.Liu,Y.Sun,andJ.Xie.2007.Relocalizationofthepolypyrimidinetract-bindingproteinduringPKA-inducedneuritegrowth.Biochim.Bio-phys.Acta1773:912–923.
48.MartinAlonso,J.M.,etal.1992.Antigenicstructureoftransmissiblegas-troenteritisvirusnucleoprotein.Virology188:168–174.
49.Martinez-Salas,E.,A.Pacheco,P.Serrano,andN.Fernandez.2008.Newinsightsintointernalribosomeentrysiteelementsrelevantforviralgeneexpression.J.Gen.Virol.89:611–626.
50.Masters,P.S.2006.Themolecularbiologyofcoronaviruses.Adv.VirusRes.66:193–292.
51.
McClurkin,A.W.,andJ.O.Norman.1966.Studiesontransmissiblegas-troenteritisofswine.II.Selectedcharacteristicsofacytopathogenicviruscommonto?veisolatesfromtransmissiblegastroenteritis.Can.J.Comp.Med.Vet.Sci.30:190–198.
52.Peiris,J.S.,Y.Guan,andK.Y.Yuen.2004.Severeacuterespiratorysyndrome.Nat.Med.10:S88–S97.
53.
Perlman,S.,T.E.Lane,andM.J.Buchmeier.2000.Coronavirus:hepatitis,peritonitis,andcentralnervoussystemdisease,p.331–348.InM.W.Cun-ninghamandR.S.Fujinami(ed.),Effectsofmicrobesontheimmunesystem.LippincottWilliams&Wilkins,Philadelphia,PA.
54.Pfefferle,S.,etal.2009.Distantrelativesofsevereacuterespiratorysyn-dromecoronavirusandcloserelativesofhumancoronavirus229Einbats,Ghana.Emerg.Infect.Dis.15:1377–1384.
55.Poon,L.L.,etal.2005.Identi?cationofanovelcoronavirusinbats.J.Virol.79:2001–2009.
56.Reyes,R.,andJ.M.Izquierdo.2007.TheRNA-bindingproteinPTBexertstranslationalcontrolon3?-untranslatedregionofthemRNAfortheATPsynthasebeta-subunit.Biochem.Biophys.Res.Commun.357:1107–1112.57.Sa′nchez,C.M.,etal.1999.Targetedrecombinationdemonstratesthatthespikegeneoftransmissiblegastroenteritiscoronavirusisadeterminantofitsenterictropismandvirulence.J.Virol.73:7607–7618.58.Sa′nchez,C.M.,etal.1990.Antigenichomologyamongcoronavirusesre-latedtotransmissiblegastroenteritisvirus.Virology174:410–417.
59.Sawicka,K.,M.Bushell,K.A.Spriggs,andA.E.Willis.2008.Polypyrimidine-tract-bindingprotein:amultifunctionalRNA-bindingprotein.Biochem.Soc.Trans.36:641–647.
60.Schelle,B.,N.Karl,B.Ludewig,S.G.Siddell,andV.Thiel.2005.Selectivereplicationofcoronavirusgenomesthatexpressnucleocapsidprotein.J.Vi-rol.79:6620–6630.
61.Schepens,B.,S.A.Tinton,Y.Bruynooghe,R.Beyaert,andS.Cornelis.2005.Thepolypyrimidinetract-bindingproteinstimulatesHIF-1alphaIRES-me-diatedtranslationduringhypoxia.NucleicAcidsRes.33:6884–6894.
62.Snijder,E.J.,etal.2003.UniqueandconservedfeaturesofgenomeandproteomeofSARS-coronavirus,anearlysplit-offfromthecoronavirusgroup2lineage.J.Mol.Biol.331:991–1004.63.Sola,I.,J.L.Moreno,S.Zun?iga,S.Alonso,andL.Enjuanes.2005.Roleofnucleotidesimmediately?ankingthetranscription-regulatingsequencecoreincoronavirussubgenomicmRNAsynthesis.J.Virol.79:2506–2516.
64.Wagner,E.J.,andM.A.Garcia-Blanco.2001.Polypyrimidinetractbindingproteinantagonizesexonde?nition.Mol.Cell.Biol.21:3281–3288.
65.
Weber,F.,V.Wagner,S.B.Rasmussen,R.Hartmann,andS.R.Paludan.2006.Double-strandedRNAisproducedbypositive-strandRNAvirusesandDNAvirusesbutnotindetectableamountsbynegative-strandRNAviruses.J.Virol.80:5059–5064.
66.Wollerton,M.C.,etal.2001.Differentialalternativesplicingactivityofisoformsofpolypyrimidinetractbindingprotein(PTB).RNA7:819–832.67.Ziebuhr,J.2005.Thecoronavirusreplicase,p.57–94.InL.Enjuanes(ed.),Coronavirusreplicationandreversegenetics,vol.287.Springer-Verlag,Ber-lin,Germany.
68.
Zuccato,E.,E.Buratti,C.Stuani,F.E.Baralle,andF.Pagani.2004.Anintronicpolypyrimidine-richelementdownstreamofthedonorsitemodu-latescystic?brosistransmembraneconductanceregulatorexon9alternativesplicing.J.Biol.Chem.279:16980–16988.69.Zun?iga,S.,I.Sola,S.Alonso,andL.Enjuanes.2004.SequencemotifsinvolvedintheregulationofdiscontinuouscoronavirussubgenomicRNAsynthesis.J.Virol.78:980–994.70.
Zun?iga,S.,I.Sola,J.L.Cruz,andL.Enjuanes.2009.RoleofRNAchap-eronesinvirusreplication.VirusRes.139:253–266.
Downloaded from http://jvi.asm.org/ on April 12, 2015 by UNIV OF CONNECTICUT