第二讲:圆
知识梳理
知识点一、圆的定义及有关概念
[来源学&科&网Z&X&X&K]
重点:掌握圆的定义及有关概念 难点:熟练掌握运用概念
1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。
2、有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
圆上任意两点间的部分叫做圆弧,简称弧。连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。
在同圆或等圆中,能够重合的两条弧叫做等弧。
例.P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;?最长弦长为_______.
解题思路:圆内最长的弦是直径,最短的弦是和OP垂直的弦,答案:10 cm,8 cm 知识点二、平面内点和圆的位置关系
重点:掌握平面内点和圆的位置关系及数量关系 难点:运用点和圆的位置关系及数量关系
平面内点和圆的位置关系有三种:点在圆外、点在圆上、点在圆内 当点在圆外时,d>r;反过来,当d>r时,点在圆外。 当点在圆上时,d=r;反过来,当d=r时,点在圆上。 当点在圆内时,d<r;反过来,当d<r时,点在圆内。
例.如图,在Rt△ABC中,直角边AB?3,BC?4,点E,F分别是BC,AC的中点,以点A为圆心,AB的长为半径画圆,则点E在圆A的_________,点F在圆A的_________.
解题思路:利用点与圆的位置关系,答案:外部,内部
,?4).试判断点P(3,?1)练习:在直角坐标平面内,圆O的半径为5,圆心O的坐标为(?1与圆O的位置关系. 答案:点P在圆O上. 知识点三、圆的基本性质
重点:掌握垂径定理、圆心角定理、圆周角定理及推论 难点:定理及推论的运用
1圆是轴对称图形,其对称轴是任意一条过圆心的直线。
2、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦对的弧。 3、圆具有旋转对称性,特别的圆是中心对称图形,对称中心是圆心。
圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
4、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
[来源学科网ZXXK]
圆周角定理推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等。
圆周角定理推论2:直径所对的圆周角是直角;90°的圆周角所对的弦是直径。 例1.如图,在半径为5cm的⊙O中,圆心O到弦AB的距离为3cm,则弦AB的长是( )
A.4cm B.6cm C.8cm D.10cm
解题思路:在一个圆中,若知圆的半径为R,弦长为a,圆心到此弦的距离为d,?根据垂径定理,有R2=d2+(
a)2,所以三个量知道两个,就可求出第三个.答案C 2例2、如图,A、B、C、D是⊙O上的三点,∠BAC=30°,则∠BOC的大小是( ) A、60° B、45° C、30° D、15°
解题思路:运用圆周角与圆心角的关系定理,答案:A
例3、如图1和图2,MN是⊙O的直径,弦AB、CD?相交于MN?上的一点P,?∠APM=∠CPM.
(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.
(2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.
AFMPECAEBNDODNBPMFC
(1) (2)
解题思路:(1)要说明AB=CD,只要证明AB、CD所对的圆心角相等,?只要说明它们的一半相等.
上述结论仍然成立,它的证明思路与上面的题目是一模一样的. 解:(1)AB=CD
理由:过O作OE、OF分别垂直于AB、CD,垂足分别为E、F ∵∠APM=∠CPM ∴∠1=∠2 OE=OF
连结OD、OB且OB=OD ∴Rt△OFD≌Rt△OEB ∴DF=BE
根据垂径定理可得:AB=CD
(2)作OE⊥AB,OF⊥CD,垂足为E、F ∵∠APM=∠CPN且OP=OP,∠PEO=∠PFO=90° ∴Rt△OPE≌Rt△OPF ∴OE=OF
连接OA、OB、OC、OD
易证Rt△OBE≌Rt△ODF,Rt△OAE≌Rt△OCF ∴∠1+∠2=∠3+∠4
∴AB=CD
例4.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?