知数的值,叫做二元一次方程组的解.5、二元一次方正组的解法(1)代入法(2)加减法6、三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程.7、三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.第四章不等式(组)考点一、不等式的概念(3分)1、不等式用不等号表示不等关系的式子,叫做不等式.2、不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.3、用数轴表示不等式的方法考点二、不等式基本性质(3~5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变.3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变.考试题型:考点三、一元一次不等式(6~8分)1、一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.2、一元一次不等式的解法解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式
组.dijfkljdslkjl;akjfkljdskl;ajfkldjfkldjkflfkljakl;djklfjdkljfkljkljklajdkljfkldjkfljdksl当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.2、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.第五章统计初步与概率初步考点一、平均数(3分)1、平均数的概念(1)平均数:一般地,如果有n个数,,,,21nxxx那么,)(121nxxxnx叫做这n个数的平均数,x读作“x拔”.(2)加权平均数:如果n个数中,1x出现1f次,2x出现2f次,…,kx出现kf次(这里nfffk21),那么,根据平均数的定义,这n个数的平均数可以表示为nfxfxfxxkk2211,这样求得的平均数x叫做加权平均数,其中kfff,,,21叫做权.2、平均数
的计算方法(1)定义法当所给数据,,,,21nxxx比较分散时,一般选用定义公式:)(121nxxxnx(2)加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:nfxfxfxxkk2211,其中nfffk21.(3)新数据法:当所给数据都在某一常数a的上下波动时,一般选用简化公式:axx'.其中,常数a通常取接近这组数据平均数的较“整”的数,axx11',axx22',…,axxnn'.)'''(1'21nxxxnx是新数据的平均数(通常把,,,,21nxxx叫做原数据,,',,','21nxxx叫做新数据).考点二、统计学中的几个基本概念(4分)1、总体所有考察对象的全体叫做总体.2、个体总体中每一个考察对象叫做个体.3、样本从总体中所抽取的一部分个体叫做总体的一个样本.4、样本容量
dijfkljdslkjl;akjfkljdskl;ajfkldjfkldjkflfkljakl;djklfjdkljfkljkljklajdkljfkldjkfljdksl样本中个体的数目叫做样本容量.5、样本平均数样本中所有个体的平均数叫做样本平均数.6、总体平均数总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数.考点三、众数、中位数(3~5分)1、众数在一组数据中,出现次数最多的数据叫做这组数据的众数.2、中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.考点四、方差(3分)1、方差的概念在一组数据,,,,21nxxx中,各数据与它们的平均数x的差的平方的平均数,叫做这组数据的方差.通常用“2s”表示,即])()()[(1222212xxxxxxnsn2、方差的计算(1)基本公式:])()()[(1222212xxxxxxnsn(2)简化计算公式
(ⅰ):])[(12222212xnxxxnsn也可写成2222212)][(1xxxxnsn此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方.(3)简化计算公式(ⅱ):]')'''[(12222212xnxxxnsn当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a,得到一组新数据
axx11',axx22',…,axxnn',那么,2222212')]'''[(1xxxxnsn此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方.(4)新数据法:原数据,,,,21nxxx的方差与新数据
axx11',axx22',…,axxnn'的方差相等,也就是说,根据方差的基本公式,求得,',,','21nxxx的方差就等于原数据的方差.3、标准差方差的算数平方根叫做这组数据的标准差,用“s”表示,即
dijfkljdslkjl;akjfkljdskl;ajfkldjfkldjkflfkljakl;djklfjdkljfkljkljklajdkljfkldjkfljdksl])()()[(1222212xxxxxxnssn考点五、频率分布(6分)1、频率分布的意义在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布.2、研究频率分布的一般步骤及有关概念(1)研究样本的频率分布的一般步骤是:①计算极差(最大值与最小值的差)②决定组距与组数③决定分点④列频率分布表⑤画频率分布直方图(2)频率分布的有关概念①极差:最大值与最小值的差②频数:落在各个小组内的数据的个数③频率:每一小组的频数与数据总数(样本容量n)的比值叫做这一小组的频率.考点六、确定事件和随机事件(3分)1、确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件.不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件.2、随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件.考点七、随机事件发生的可能性(3分)一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小.要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样.所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题.考点八、概率的意义与表示方法(5~6分)1、概率的意义一般地,在大量重复试验中,如果事件a发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件a的概率.2、事件和概率的表示方法一般地,事件用英文大写字母a,b,c,…,表示事件a的概率p,可记为p(a)=p考点九、确定事件和随机事件的概率之间的关系(3分)1、确定事件概率(1)当a是必然发生的事件时,p(a)=1(2)当a是不可能发生的事件时,p(a)=02、确定事件和随机事件的概率之间的关系事件发生的可能性越来越小01概率的值不可能发生必然发生事件发生的可能性越来越大
播放器加载中,请稍候...
系统无法检测到您的adobeflashplayer版本
建议您在线安装最新版本的flashplayer在线安装