好文档 - 专业文书写作范文服务资料分享网站

圆锥曲线中距离的最值问题 

天下 分享 时间: 加入收藏 我要投稿 点赞

圆锥曲线中距离的最值问题

沙洋中学 张仙梅

一. 求圆锥曲线上一点到对称轴上一定点的距离的最值

x221例1:已知椭 圆+y=1,点A( ,0),点P是椭圆上任意一点,求|PA|的最值。

24

y2x2+=1 ,点A(0 ,2)变式1:已知椭 圆 ,点P是椭圆上任意一点,求|PA|的最值。 169

y2x2-=1 ,点A(0 ,2)变式2:已知双曲线 ,点P是双曲线上任意一点,求|PA|的

169最值。

变式3: 已知抛物线y=4x,点A( 值。

21 ,0),点P是抛物线上任意一点,求|PA|的最2

x22

变式4:已知椭 圆+y=1和圆x2+(y-4)2=1各有一点A、B,求AB的最大值。

4

x22

变式5:已知椭 圆+y=1和圆x2+(y-3)2=5各有一点A、B,求AB的最大值。

10

二.求圆锥曲线上一点P到定直线的距离的最值

x2y2+=1 ,直线l:x+2y+18=0。 例2:已知椭 圆C:94(1)在椭圆上求一点P1,使点P1到直线l的距离最近,并求出最近距离。

(2)在椭圆上求一点P2,使点P2到直线l的距离最远,并求出最远距离。

x2y2+=1 ,直线l:x-y-24=0。 变式1:已知椭 圆C:

916(1)在椭圆上求一点P1,使点P1到直线l的距离最近,并求出最近距离。 (2)在椭圆上求一点P2,使点P2到直线l的距离最远,并求出最远距离。

变式2:已知抛物线C:x2=4y ,直线l:x-y-2=0。 在抛物线求一点P,使点P到直线l的距离最近,并求出最近距离。

三.利用第一定义求最值

x2y2+=1 的左右焦点 ,P为椭圆上一点,M为圆例3:设F1、 F2分别是椭 圆C:43(x-4)2+(y-3)2=1上一点,则|PM|+|PF1|的最大值等于___________,最小值等于__________

圆锥曲线中距离的最值问题 

圆锥曲线中距离的最值问题沙洋中学张仙梅一.求圆锥曲线上一点到对称轴上一定点的距离的最值x221例1:已知椭圆+y=1,点A(,0),点P是椭圆上任意一点,求|PA|的最值。24y2x2+=1,点A(0,2)变式1:已知椭圆,点P是椭圆上任意一点,
推荐度:
点击下载文档文档为doc格式
0iz0h9c4fn03gjz5z87x
领取福利

微信扫码领取福利

微信扫码分享