课题: §3.3.1二元一次不等式(组)与平面区域
第1课时
教学分析
本节介绍了用二元一次不等式表示平面区域和简单的线性规划问题,使学生会用二元一次不等式表示平面区域,了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,了解线性规划问题的图解法,并能应用线性规划的方法解决一些简单的实际问题,以提高解决实际问题的能力。
授课类型:新授课 教学目标
1.知识与技能:了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域;
2.过程与方法:经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力;
3.情态与价值:通过本节课的学习,体会数学来源与生活,提高数学学习兴趣。
教学重难点
用二元一次不等式(组)表示平面区域; 教学过程 1.课题导入
1.从实际问题中抽象出二元一次不等式(组)的数学模型 课本第91页的“银行信贷资金分配问题”
教师引导学生思考、探究,让学生经历建立线性规划模型的过程。 在获得探究体验的基础上,通过交流形成共识:
2.讲授新课
1.建立二元一次不等式模型
把实际问题 转化 数学问题:
设用于企业贷款的资金为x元,用于个人贷款的资金为y元。 (把文字语言 转化 符号语言) (资金总数为(1)
(预计企业贷款创收12%,个人贷款创收10%,共创收30 000元以上) ?(12%)x+(10%)y?30000 即12x?10y?3000000 (2)
(用于企业和个人贷款的资金数额都不能是负值)?x?0,y?0 (3)
将(1)(2)(3)合在一起,得到分配资金应满足的条件:
?x?y?25000000??12x?10y?3000000 ?x?0,y?0?25 000 000元)?x?y?25000000
2.二元一次不等式和二元一次不等式组的定义
(1)二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式。
(2)二元一次不等式组:有几个二元一次不等式组成的不等式组称为二元一次不等式组。
(3)二元一次不等式(组)的解集:满足二元一次不等式(组)的x和y的取值构成有序实数对(x,y),所有这样的有序实数对(x,y)构成的集合称为二元一次不等式(组)的解集。
(4)二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系: 二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,进而,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合。
3.探究二元一次不等式(组)的解集表示的图形 (1)回忆、思考
回忆:初中一元一次不等式(组)的解集所表示的图形——数轴上的区间
思考:在直角坐标系内,二元一次不等式(组)的解集表示什么图形? (2)探究 从特殊到一般:
先研究具体的二元一次不等式x-y<6的解集所表示的图形。
如图:在平面直角坐标系内,x-y=6表示一条直线。平面内所有的点被直线分成三类:
第一类:在直线x-y=6上的点;
第二类:在直线x-y=6左上方的区域内的点; 第三类:在直线x-y=6右下方的区域内的点。
设点是直线x-y=6上的点,选取点,使它的坐标满足不等式x-y<6,请同学们完成课本第93页的表格,
横坐标x 点P的纵坐标y1 点A的纵坐标y2 并思考:
当点A与点P有相同的横坐标时,它们的纵坐标有什么关系?
根据此说说,直线x-y=6左上方的坐标与不等式x-y<6有什么关系?
直线x-y=6右下方点的坐标呢? 学生思考、讨论、交流,达成共识:
在平面直角坐标系中,以二元一次不等式x-y<6的解为坐标的点都在直线x-y=6的左上方;反过来,直线x-y=6左上方的点的坐标都满足不等式x-y<6。
因此,在平面直角坐标系中,不等式x-y<6表示直线x-y=6左上方的平面区域;如图。
类似的:二元一次不等式x-y>6表示直线x-y=6右下方的区域;如图。 直线叫做这两个区域的边界
-3 -2 -1 0 1 2 3 由特殊例子推广到一般情况: (3)结论:
二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)
4.二元一次不等式表示哪个平面区域的判断方法
由于对在直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.(特殊地,当C≠0时,常把原点作为此特殊点)
【应用举例】
例1 画出不等式x?4y?4表示的平面区域。 解:先画直线x?4y?4(画成虚线).
取原点(0,0),代入x+4y-4,∵0+4×0-4=-4<0,
∴原点在x?4y?4表示的平面区域内,不等式x?4y?4表示的区域如图:
归纳:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法。特殊地,当C?0时,常把原点作为此特殊点。
变式1、画出不等式4x?3y?12所表示的平面区域。 变式2、画出不等式x?1所表示的平面区域。
?y??3x?12例2 用平面区域表示.不等式组?的解集。
x?2y?分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。
解:不等式y??3x?12表示直线y??3x?12右下方的区域,x?2y表示直线x?2y右上方的区域,取两区域重叠的部分,如图的阴影部分就表示原不等式组的解集。
归纳:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。
变式1、画出不等式(x?2y?1)(x?y?4)?0表示的平面区域。
变式2、由直线x?y?2?0,x?2y?1?0和2x?y?1?0围成的三角形区域(包括边界)用不等式可表示为 。
3.随堂练习
1、课本第97页的练习1、2、3 4.课时小结
1.二元一次不等式表示的平面区域.
2.二元一次不等式表示哪个平面区域的判断方法. 3.二元一次不等式组表示的平面区域. 5.评价设计
课本第105页习题3.3[A]组的第1题 板书设计 授后记