好文档 - 专业文书写作范文服务资料分享网站

(word完整版)江苏省初中九年级数学中考知识点总结归纳,推荐文档

天下 分享 时间: 加入收藏 我要投稿 点赞

教习网-海量精品中小学课件试卷教案免费下载

江苏省中考数学知识点总结

1.相反数

(1)相反数的概念:只有符号不同的两个数叫做互为相反数.

(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号. 2.绝对值

(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值. ①互为相反数的两个数绝对值相等;

②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数. ③有理数的绝对值都是非负数.

(2)如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定: ①当a是正有理数时,a的绝对值是它本身a; ②当a是负有理数时,a的绝对值是它的相反数﹣a; ③当a是零时,a的绝对值是零. 即|a|={a(a>0)0(a=0)﹣a(a<0)

找同步教案、找试卷、找练习题、找答案就上教习网

教习网-海量精品中小学课件试卷教案免费下载

3.科学记数法—表示较大的数

(1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】 (2)规律方法总结:

①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.

②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.

4.实数的运算

(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.

(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行. 另外,有理数的运算律在实数范围内仍然适用.

【规律方法】实数运算的“三个关键”

1.运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.

2.运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次

找同步教案、找试卷、找练习题、找答案就上教习网

教习网-海量精品中小学课件试卷教案免费下载

运算,无论何种运算,都要注意先定符号后运算.

3.运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.

5.同底数幂的乘法

(1)同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加. am?an=a m+n(m,n是正整数)

(2)推广:am?an?ap=a m+n+p(m,n,p都是正整数)

在应用同底数幂的乘法法则时,应注意:①底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x﹣y)2与(x﹣y)3等;②a可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.

(3)概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.

6.分式的加减法

(1)同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.

(2)异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.: 说明:

①分式的通分必须注意整个分子和整个分母,分母是多项式时,必须先分解因式,分子是多项式时,要把分母所乘的相同式子与这个多项式相乘,而不能只同其中某一项相乘.

②通分是和约分是相反的一种变换.约分是把分子和分母的所有公因式约去,将分式化为较简单的形式;

找同步教案、找试卷、找练习题、找答案就上教习网

教习网-海量精品中小学课件试卷教案免费下载

通分是分别把每一个分式的分子分母同乘以相同的因式,使几个较简单的分式变成分母相同的较复杂的形式.约分是对一个分式而言的;通分则是对两个或两个以上的分式来说的.

7.零指数幂

零指数幂:a0=1(a≠0)

由am÷am=1,am÷am=am﹣m=a0可推出a0=1(a≠0) 注意:00≠1.

8.解二元一次方程组

(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x(或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.

(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用{x=ax=b的形式表示.

9.根与系数的关系

找同步教案、找试卷、找练习题、找答案就上教习网

教习网-海量精品中小学课件试卷教案免费下载

(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.

(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=

,x1x2=,反过来也成立,即=﹣(x1+x2),=x1x2.

(3)常用根与系数的关系解决以下问题:

①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③不解方程求关于根的式子的值,如求,x12+x22等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.

10.分式方程的应用

1、列分式方程解应用题的一般步骤:设、列、解、验、答.

必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.

2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间 等等.

列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.

11.解一元一次不等式组

找同步教案、找试卷、找练习题、找答案就上教习网

(word完整版)江苏省初中九年级数学中考知识点总结归纳,推荐文档

教习网-海量精品中小学课件试卷教案免费下载江苏省中考数学知识点总结1.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.(3)多重符号的化简:与“+”个数无关,有奇
推荐度:
点击下载文档文档为doc格式
0iw1z15app1j03v4iv5u208bi780fr00a64
领取福利

微信扫码领取福利

微信扫码分享