【答案】25
【解】有A1+A2+A8=50, A9+A2+A3=50, A4+A3+A5=50, A10+A5+A6=50, A7+A8+A6=50,
于是有A1+A2+A8+A9+A2+A3+A4+A3+A5+A10+A5+A6+A7+A8+A6=250, 即(A1+A2+A3+A4)+(A9+A3+A5+A10)+A2+A5+2A6+2A8+ A7=250.
有74+76+A2+A5+2(A6+A8) + A7=250,而三角形A6A7A8中有A6+A7+A8=50,其中A7=25,所以A6+A8=50-25=25.
那么有A2+A5=250-74-76-50-25=25.
【提示】上面的推导完全正确,但我们缺乏方向感和总体把握性。
其实,我们看到这样的数阵,第一感觉是看到这里5个50并不表示10个数之和,而是这10个数再加
上内圈5个数的和。这一点是最明显的感觉,也是重要的等量关系。
再“看问题定方向”,要求第2个数和第5个数的和,
说明跟内圈另外三个数有关系,而其中第6个数和第8个数的和是50-25=25,
再看第3个数,在加两条直线第1、2、3、4个数和第9、3、5、10个数时,重复算到第3个数, 好戏开演:
74+76+50+25+第2个数+第5个数=50×5 所以第2个数+第5个数=25
13.下面有三组数
131311289(1)3,1.5,6 (2)0.7,1.55 (3)4,2,1.6,20
2从每组数中取出一个数,把取出的三个数相乘,那么所有不同取法的三个数乘积的和是多少? 【答案】720
【铺垫】在一个6×5的方格中,最上面一行依次填写0、1、3、5、7、9;在最左一列依次填写0、2、4、6、8,其余每个格子中的数字等于与他同一行中最左边的数字与同一列中最上面的数字之和。问:依次填满数字以后,这30个数字之和是多少?
【解】思路同原题。(2+4+6+8)×6+(1+3+5+7+9)×5=245
因为原题较复杂,也可先讲此题,然后再讲原题。
1?13??1?3?2?1.5?12???0.7?1.55????9?1.6?8?6?220?=16×2.25×20=720. ?4【解】?3【提示】推导这部分内容,可别忘了帮学生复习一下求一个数所有约数和的公式。融会贯通的机会来了。