学 号:
智能仪器原理与应用
题 目 班 级 姓 名 指导教师
基于单片机的电压表设计
年 月 日
武汉理工大学《智能仪器原理与应用》课程设计
目录
第1章 设计背景 ............................................................. 1 第2章 系统总体方案设计 ..................................................... 2 第3章 系统硬件电路设计 ..................................................... 3
3.1 系统控制器的设计 .................................................... 3 3.2 电压数据采集模块 .................................................... 4 3.3 LCD1602显示电路 ..................................................... 5 3.4 按键设置模块 ........................................................ 6 3.5 报警电路模块 ........................................................ 7 3.6 上位机通信模块 ...................................................... 7 3.7 温度采集模块 ........................................................ 8 第4章 软件电路设计 ......................................................... 9
4.1 主程序流程图 ........................................................ 9 4.2 量程自动切换子程序流程图 ............................................ 9 4.3 A/D转换子程序流程图 ................................................ 10 4.4 温度测量子程序流程图 ............................................... 11 心得体会 ................................................................... 12 参考文献 ................................................................... 13 附录 ....................................................................... 14
武汉理工大学《智能仪器原理与应用》课程设计
基于单片机的电压表设计
第1章 设计背景
随着科学技术的发展,人们对宏观和微观世界逐步了解,越来越多的微弱信号需要被检测,例如:弱磁、弱光、微震动、小位移、心电、脑电等。测控技术发展到现在,微弱信号检测技术已经相对成熟,基本上采用以下两种方法来实现:一种是先将信号放大滤波,再用低或中分辨率的ADC进行采样,转化为数字信号后,再做信号处理,另一种是使用高分辨率ADC,对微弱信号直接采样,再进行数字信号处理。两种方法各有千秋,也都有自己的缺点。前一种方法,ADC要求不高,特别是现在大部分微处理器都集成有低或中分辨率的ADC,大大节省了开支,但是增加了繁琐的模拟电路。后一种方法省去了模拟电路,但是对ADC性能要求高,虽然∑-△ADC发展很快,已经可以做到24位分辨率,价格也相对低廉,但是它是用速度和芯片面积换取的高精度,导致采样率做不高,特别是用于多通道采样时,由于建立时间长,采样率还会显著降低,因此,它一般用于低频信号的单通道测量,满足大多数的应用场合。
在对采样精度要求不断提升的情况下,科技工作者也在其他方面对智能仪表的发展提出了新的要求,如:良好的人机界面、数据存储和通讯、阈值报警和较低的功耗等,同时还要求仪表具有较高的性价比。
本文主要设计的是基于单片机的量程自动选择的电压表的设计。用来精确地采集不同等级的电压表。数字电压表是采用数字化测量技术,把连续的量输入电压转换成不连续离散的数字化形式并加以显示的仪表作为现代电子测量中最基础与核心的一种测量仪器,对其测量精度和功能要求也越来越高,由于电压测量范围广特别是在微电压高电压及待测信号强弱相差极大情况下,既要保证弱信号测量精度又要兼顾强信号的测量范围,传统的手动转换量程的电压表在测量技术上有一定难度同时若量程选择不当不但会造成测量精度下降甚至损坏仪表。
1
武汉理工大学《智能仪器原理与应用》课程设计
第2章 系统总体方案设计
本文设计的数字电压表测量直流电压范围为0~200V。共分为4个档位,0~0.2V档,0.2V~2V档,2V~20V档,20V~200V档。并且在测量的时候可以进行自动量程切换。系统设计框图如图2-1所示。其主要由单片机作为主控芯片,将要实现的各个功能分为若干个模块来实现,有电压数据采集模块,按键设置模块,温度采集模块,LCD1602显示模块,数据报警模块,以及与上位机通信模块。为了以后的扩展,预留了其他输入通道。其中,电压数据采集模块包括两个部分,信号调理电路和量程自动选择电路,它要实现的功能即是将采用并联法采集到的电压信号调理为合适的数字信号和实现自动选择量程,在自动选择量程上体现了此电压表的只能化。按键设置模块,有四个按键,用于手动选择量程,当自动选择量程功能出现故障时,即可用手动来选择量程,以此来为设计的完善性做一定的补充。温度采集模块,用温度传感器对测量现场进行温度检测,一般温度的会对要测的电压电路内部元件、材料电阻产生影响,从而对电压产生影响,故加入温度采集模块,保证能在正常工作状态的温度下,进行相对准确的电压测量。LCD1602显示模块,用两行来显示所选档位、现场温度、所测电压值,使使用者可以一目了然。数据报警模块,当测量电压值高于此电压表的最大量程时,报警电路报警。当测量的温度高于设定的最高温度时,报警电路也发出报警信息。在得到报警后,我们可以及时采取措施,消除警报,正确使用电压表。上位机通信模块,通过串口可以将采集的电压值或者温度值上传给上位机进行数据存储或者处理。预留的其它的输入通道,是便于以后对此电压表的扩展和二次开发。
电压数据采集模块LCD1602显示电路按键设置模块主控单片机STC12C5A60S2温度采集模块上位机通信模块其他数据采集模块 数据报警模块图2-1 数字电压表的功能框图
2
武汉理工大学《智能仪器原理与应用》课程设计
第3章 系统硬件电路的设计
3.1 系统控制器的设计
本系统控制核心采用增强型C51内核单片机,型号为STC12C5A60S2,该芯片为宏晶公司的主流型号,其片上资源丰富,包含八路精度为10位AD转换器,程序存储器为32KB,并集成有28KB的EEPROM,方便数据的存储,并能实现掉电不丢失。数据存储器1280字节,其中1024字节使用片外寻址方式访问,256字节为直接访问,解决了51内核单片机数据存储器不足的问题,并且为ADC的过采样提供了充足的数据缓冲区。此外,该芯片具有较高的性价比,能为整个系统的设计降低成本。芯片的引脚图如图3-1所示。
图3-1 STC12C5A60S2引脚图
以此芯片设计了数字电压表的最小系统,包括晶振电路和复位电路。最小系统电路图如图3-2所示。
3