人教版 七年级数学下册 第五章相交线与平行线 压轴题专项练习
人教版七下第五章相交线与平行线单元能力提升卷
压轴题专项培优
1.(1)如图1,a∥b,则∠1+∠2=
(2)如图2,AB∥CD,则∠1+∠2+∠3= ,并说明理由; (3)如图3,a∥b,则∠1+∠2+∠3+∠4=
(4)如图4,a∥b,根据以上结论,试探究∠1+∠2+∠3+∠4+…+∠n= (直接写出你的结论,无需说明理由)
2.探究:如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和点D,直线l3有一点P (1)若点P在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生,并说明理由. (2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?并说明理由.
3.(1)已知:如图1,直线AC∥BD,求证:∠APB=∠PAC+∠PBD;
(2)如图2,如果点P在AC与BD之内,线段AB的左侧,其它条件不变,那么会有什么结果?并加以证明;
(3)如图3,如果点P在AC与BD之外,其他条件不变,你发现的结果是_______(只写结果,不要证明).
4.如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,∠ADC =70°.
(1)求∠EDC的度数;
(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示); (3)将线段BC沿DC方向平移, 使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.
5.如图(1),E是直线AB,CD内部一点,AB//CD,连接EA,ED. (1)探究猜想:
00
①若∠A=30, ∠D=40,则∠AED等于多少度?
00
②若∠A=20,∠D=60,则∠AED等于多少度?
③猜想图(1)中∠AED, ∠EAB, ∠EDC的关系,并证明你的结论. (2)拓展应用:
如图(2),射线FE与长方形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③④位于直线AB上方),P是位于以上四个区域中的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).
6.如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC =70°.
(1)求∠EDC的度数;
(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);
(3)将线段BC沿DC方向平移, 使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.
7.已知AB∥CD.
如图1,你能得出∠A+∠E+∠C=360°吗?
如图2,猜想出∠A、∠C、∠E的关系式并说明理由. 如图3,∠A、∠C、∠E的关系式又是什么?
8.如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D. (1)求∠CBD的度数;
(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是 .
9.如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF. (1)请在图中找出与∠AOC相等的角,并说明理由;
(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值; (3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.
10.已知AM∥CN,点B为平面内一点,AB⊥BC于B.
(1)如图1,直接写出∠A和∠C之间的数量关系 ; (2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;