函数的奇偶性公开课优秀教案(比赛课教案)
《函数的奇偶性》教案
一、教材分析
“奇偶性”是人教版必修1中第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节。
函数的奇偶性是函数的一条重要性质,教材从学生熟悉的初中学过的的一些轴对称图形入手,体会到数形结合思想,初步学会用数学的眼光看待事物,感受数学的对称美。尝试画出f(x)=x2和f(x)=|x|的图像,从特殊到一般,从具体到抽象,比较系统地介绍了函数的奇偶性.从知识结构看,奇偶性既是函数概念的拓展和深入,又是为以后学习基本初等函数奠定了基础。因此,本节课起着承上启下的重要作用。
二、学情分析
从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,上节课学习了函数单调性,积累了研究函数的基本方法与初步经验。
三、教学目标
【知识与技能】
1.理解奇函数、偶函数的概念及其几何意义;
2.能从定义、图像特征、性质等多种角度判断函数的奇偶性,学会函数的应用。 【过程与方法】
通过实例观察、具体函数分析、数与形的结合,定性与定量的转化,让学生经历函数奇偶性概念建立的全过程,体验数学概念学习的方法,积累数学学习的经验。
【情感、态度与价值观】
1.在经历概念形成的过程中,培养学生内容、归纳、抽象、概括的能力; 2.通过自主探索,体会数形结合的思想,感受数学的对称美。
四、教学重点和难点
重点:函数奇偶性的概念和函数图像的特征。
函数的奇偶性公开课优秀教案(比赛课教案)
难点:利用函数奇偶性的概念和图像的对称性,证明或判断函数的奇偶性。
五、教学方法
引导发现法为主,直观演示法、类比法为辅。
六、教学手段
PPT课件。
七、教学过程
(一)情境导入、观察图像
出示一组轴对称和中心对称的图片。
设计意图:通过图片引起学生的兴趣,培养学生的审美观,激发学习兴趣。 师:“同学们,这是我们生活中常见的一些具有对称性的物体,你能说出它们有什么特点吗?”
生:“它们的共同点都是关于某一地方是对称的。”
师:“是的,而我们今天要学习的函数图像也有类似的对称图像,首先我们来尝试画一下f(x)=x2和f(x)=|x|的图像,并一起探究几个问题。” (二)探究新知、形成概念
探究1.观察下列两个函数f(x)=x2和f(x)=|x|的图象,它们有什么共同特征吗?
函数的奇偶性公开课优秀教案(比赛课教案)
设计意图:从学生熟悉的f(x)=x2和f(x)=|x|的图像入手,顺应了同学们的认知规律。
2.填函数对应值表,找出f(x)与f(?x)有什么关系?
0 1 2 3 0 1 2 3 设计意图:从“形”过渡到“数”,为形成概念做好铺垫。 3.通过填表,你发现了什么?
设计意图:通过填表,学生自己得出当自变量x取一对相反数时,相应的函数值相等一关系。
4.我们能否用函数解析式来描述函数图像的特征呢?
设计意图:引导学生从函数解析式入手,通过证明,形成概念,板书偶函数的定义:
一般地,如果对于函数??(??)的定义域内任意一个??,都有??(??)=??(???),那么函数??(??)就叫做偶函数。
探究2.观察下列两个函数图象,它们有什么共同特征吗?